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Lecture – 33 

Time Closure (Part 2) 

 

So, we continue with a discussion on Timing Closure. In this lecture we shall be 

discussing in some detail how this static timing analysis works. Now recall what we 

mentioned during our last lecture. Static timing analysis is a software tool using which 

you can estimate the worst case delays in a combination circuit netlist. So, this, the 

analysis is very useful to detect timing violations in a design in a circuit net list. So, that 

we can move to the next step and try to correct those violations. So, we proceed with this 

lecture. 
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Here what we talk about at the beginning is that we say that almost all digital ICs are 

synchronous finite set machines. Let us try to explain this. So, how does a finite set 

machine look like? Let us see that first. So, any finite set machine; that means, 

synchronous sequential circuit can be modeled as follows. So, you have a combinational 

circuit you have a set of flip flops. So, I am showing them separately. So, some primary 

inputs are coming these are the primary inputs, some primary outputs are coming out PO. 

Some outputs are going to the input of the flip flop. So, this we call it as the next state 

and this we call it as the present state PS. And there is a clock which will be feeding the 

flip flop. 

So, normally in this model what is assumed is that the clock is a periodic signal that goes 

like this. Let say it is triggered at the positive edge of the clock, so at every positive edge 

of the clock here, here and here, this state changes take place. So, what do we mean by 

state changes, you see for a particular specimen after this clock is present let say after 

this time, the inputs to the combination circuit are stable the PI is coming this PS is also 

stable. So, combination circuit will be having some delay. After that delay it will be 

computing PO and NS. And when the next h comes this NS is already at the input of the 

flip flop. So, when the next clock comes this NS will get stored and it will now become 

the PS for the next cycle right. 



 

 

So, in this way it goes on, and again this clock period will be decided not only by the 

combination circuit delay, but also some characteristics of this flip flop this set up and 

hold times, set up and hold right. Now this model of a combination circuit can also be 

expressed as if you are unrolling it in time. Let say I have this inputs which I have 

coming in sequence, let say first I 1 then I 2 then I 3 then I 4 like this. Now in this model 

there are coming sequentially in every iteration I am applying one input and the next 

state is coming is becoming the present state. Then I apply I 2 then I 3 then I 4 and so on. 

Now sometimes just for modeling an analysis not for actual circuit realization we may 

have to do a process called unrolling. 

So, we unroll this iterative structure. Like for example, I unroll it 3 times. So, that here 

what I am saying is that this I 1, I 2, I 3, these are as if applied at the same time, 3 3 3 we 

are dividing and in this diagram that I have shown. So, here actually we have unrolled 

the circuit in time 3 times. So, here if you see that same circuit we have unrolled it 3 

times. So, the first copy the output of it goes to the flip flop, the output of it comes to the 

second copy the output goes to the flip flop these output of it comes to the third copy. 

Now what I have not shown is that here the input I 1 is coming here the input I 2 is 

coming here the input I 3 is coming. So, here in one clock we are doing the task of 3 

clocks in the previous circuit. 

Now, this kind of unrolling we often do in order to capture the delay rated things in the 

combinational circuits and how it can effect across clock citrus. So, just for that analysis 

sometimes we may have to unroll a sequential circuit like this. 
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So, when we talk about the maximum clock frequency that you can have in a given 

design there are 3 things that we can possibly control. Now this also depends on the set 

up and hold times that I have mentioned that set and hold times are something that we 

assume that we cannot control, because we are already picking up this storage cell from 

some from some technology library, those are already pre designed. And pre designed 

means the set up and hold times are already specified. So, as a designer I cannot make 

this set up time longer us or shorter or the hold times longer or shorter those are fixed. 

But the parameters with which we can play around is we can control the gate delays. So, 

we can make a gate smaller we can make a gate larger. This corresponds to the signal 

delays due to gate transitions. Gate transition means given a gate whenever one of the 

input changes s from 0 to 1 or 1 to 0, after how much time the output of the gate will 

show that transition taking place that is the gate delay in terms of transitions. Similarly 

wire delays, which correspond to the signal propagation along the interconnecting wires. 

So, again we saw earlier we can control the wire delays, like we can make a wire delay 

shorter by inserting buffers, try and make it shorter, but sometimes also we may one to 

make wire longer increase the delay, like you recall in clock net routing to adjust this 

skew we may have to slow down one of the wires. 

So, then we may have to do something called snaking some kind of zig zag kind of a 

path we may take. So, that the total length increases and the delay gets balanced. And 



 

 

third is of course, clock skew clock skew something that also determines the maximum 

clock frequency and clock skew is something this also depends on the design. So, you 

can have a design with a very good clock skew very small for some designs where it can 

be significantly higher. Now to estimate the timing to estimate this gate delays and wire 

delays clock skew you are ignoring for time being. So, we perform a process called static 

timing analysis. So, in this analysis as I said we assume that clock skew is negligible as 

compared to the gate and wire delays. 

Clock skew we shall be considering separately. So, once the clock network is being 

designed synthesized, then only we shall look at the clock skews and adjusted it as 

required, but while we are doing static timing analysis we look at only the gate delays 

and the wire delays. 
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Let see what static timing analysis this process actually does. Static timing analysis the 

first point you notice that it works only for a combination circuit not for a sequential 

circuit. So, it takes segment of a given net list between 2 storage or flip flop stages it is a 

pure combinational circuit it estimates the worst case delays roughly it is like that. So, 

the illustration that I shall be giving for this process, here the combination logic will be 

expressed as a direct cyclic graph. Direct acyclic graph means graph where every edges 

has an arrow it shows the direction of signal transition and there is no feedback, there is 

no directed cycle - directed acyclic means no cycles. 
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So, we take an example. So, we consider an example like let us just draw this circuit 

separately. So, we have taken an example like this. This is a simple combinational circuit 

we have taken. So, the input let us call it a b and c, this is x this gate is y this is z this is w 

and the output is f. So, what we are assuming here is that that let say we will just 

illustrate the static timing analysis with respect to the example of this circuit, let say I 

look at the access of time this represents my time t equal to 0. So, what we assume that 

there are some signal transitions appearing at a b and c. So, we are assuming that at the 

signal transition is taking place exactly at time t equal to 0, at b this can be 1 to 0 or 0 to 

1 it does not matter. I am just showing 1 0 to 1. At b it is or also at 0 and let say another 

time scale this is 0.6 little later. 

So, in c the transition is taking place little later, you see this can always happen because a 

b c is coming from some other circuit previously right. So, it is not necessarily true that 

all the inputs will be changing state at the same time. So, the first thing is that in static 

timing analysis we have to annotate the primary inputs by saying that when the inputs are 

transiting or changing state. So, in this example if you see, here you are assuming this a b 

c these inputs I am showing them like this 0 0 and 0.6. This indicates the time at which 

the signal transitions take place in the inputs right. There are a few other things we are 

assuming we are assuming some delays of these gates which I have shown inside. See x 



 

 

delays 1 2 2 and 2. So, let us note this down and this diagram also the delay of this is 1 

this is 2, this is 2, and this is 2. 

Not only that we are also just annotating on this diagram, the delays of the 

interconnection wires, in some units it is showing as 0.15 0.1 like this. So, I am also 

showing the delays like this. So, this delay is 0.1 this delay is 0.15, this is 0.1 this is 0.2, 

this is x 2 this is 0.1, x 2 this is 0.3, this is 0.25 and the output line delay is 0.2. So, this 

will be the input of your static timing analysis tool. So, I specify not only this also I 

specify the input arrival times 0, 0 and 0.6. So, I specify the input arrival times, I specify 

the gate delays I specify the wire delays. Now you can understand you can provide 

realistic estimate of the wire delays provided you already had made some placement. So, 

it is assumed that already placement is done, you have some very good measures of the 

interconnection wire delays with that you are doing this static timing analysis. 
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Now, the next step is to model this as a direct acyclic graph. So, this graph will be having 

one vertex for each input and output as well as one vertex for each logic gate right. So, 

you introduce a dummy source node s from where there will be an h 2 each of the inputs. 

And the logic gate vertices will be labeled with the delays and the directed edges will 

indicate wire delays. So, let see for this example what will happen.  



 

 

For this case let us try to just work out. So, here the inputs are a b c. So, I am also just 

indicating the delay in bracket. So, in the primary input there are no delays these are the 

primary input and I have introduced a dummy vertex s from s there will be an h to each 

of the primary inputs. So, I am assuming the delays are 0 0 and 0.6 because 0.6 is arrival 

time at c. And from b there will be an h 2 x, which has a delay of 1. And this weight is 

0.1 and then we have y with a delay of 2 there is an edge like this with a weight 0.1 there 

is an h from here also with a weight 0.15. 

Then similarly we have z. Again with 2 from x we have an edge 2.3 and from c you have 

an edge to 0.1 and here you have the gate w with a delay of 2 this is 0.25, this is 0.2 and 

finally, output on the f that does not have a delay, but this interconnection is 0.2. So, this 

is your direct acyclic graph representation of your given gate level net list right. So, from 

the given gate level net list and the arrival times, you create a graph like this. Now your 

static timing analysis your tool will work on this graph representation right. 
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So, let see. Here we show this graph that same graph I had drawn. We first construct this 

graph. Now with respect to this graph we then calculate sometimes. First thing is called 

the actual arrival time. The actual arrival time of a node this is actually belongs to this 

symbol is not coming correctly v belongs to capital V. 

So, the arrival time of a given node small v that belongs to a set V, which is denoted as 

actual arrival time of v, is defined as the latest transition time at that point measuring 

from the beginning of the clock cycle. So, as a matter of convention this AAT, will 

record the arrival time at the output side of node v. Like you look at this example again 

look at this example again. So, let say let us look at this s, well s this nothing like arrival 

this is a dummy node. So, I assume that the arrival time here is 0 I am showing like this. 

A, a transition takes places at times 0, b takes place at time 0, and c takes place at time 

0.6 this is already there in the now let us look at the others. 

For x the delay of x is 1 and the delay of the input b which is at time 0 is 0.1. So, it will 

be 1 plus 0.1 only after 1.1 the output of x will be available. So, I label this with 1.1. 

Now once I have leveled this with 1.1 you look at this y. So, there are 2 paths we have to 

consider both the paths. In the first path it will be 2 plus 0.15, 2.15 and along this path it 

will be 1.1 plus 0.1 plus 2; that means, this is larger you record the larger number 3.2. 

Similarly, in z there are 2 paths one is 0.6 plus 0.1 plus 2, 2.7 other side 1 plus 1, 0.3, 2 

that is 3.4. 3.4 is larger, record that. 



 

 

Come here there are again 2 paths 3.2 plus 0.2 plus 2, or 3.4 plus 0.25 plus 2. This is 

larger it will be 5.65. And in the output side finally, plus 0.2 it is 5.85. So, in green 

whatever I have shown you are actually getting actual arrival times of the signal 

transitions at every node assuming the gate delays and the wire delays. This can be done 

by a single pass through the circuit right. So, the complexity of this process will be 

number of vertices plus number of edges not more than that linear in the size of the 

circuit. It can be done for large circuits also. 
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So, this is shown in this diagram exactly what you have worked out. So, as I said this all 

actual arrival time values shown in blue here in this diagram, can be computed in order 

number of vertices plus number of edges because we have to visit every vertex exactly 

once we have to traverse every edge also exactly once in this process. 

You have to do something called a topological sorting first; then from left to right you 

have to traverse. Because of this linear time complexity, the static timing analysis can be 

very easily used for very large circuits comprising of millions of gates as well. So, this 

becomes an attractive tool for very quick estimate of the timing delays and hence some I 

can say timing violations. 
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Now, once we have done this, next just going back once. So, this this this actual arrival 

time actually formally definition goes like this, so for a node v. So, if there are number of 

fan in nodes let say u belongs to fan in of v. So, for each of them you consider the actual 

arrival time of that node plus the wire delay take the maximum of that exactly what we 

have done right, that way you calculate AAT, now required arrival time is different. Well 

again this should be belonging to, required arrival time means you see the user have 

specified the required arrival time of my output. That is the maximum delay I want the 

minimum delay I want. So, from that value I can back trace and you can deduce what 

will be the required arrival time for the other nodes. 

Like for calculating AAT, actual arrival time we assumed when the input transitions are 

taking place. And from there we are calculating and finding out the transitions in the 

other node, but for required arrival time we are doing in the reverse way. From the 

output side we are saying that well at time into of 5 I want the output to be stable. So, 

therefore, in the previous stage when it should be stable. Therefore, in the earlier stage 

when it should be stable like that that is RAT. So, RAT we define as the time by which 

the latest transition at a given node must occur. This is a required dead line, in order for 

the circuit to operate within a given clock cycle. 
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Now, here one thing that when we are calculating the AAT. So, what we are doing. For 

every vertex V we are looking at the input fan ins. Let say u, u 1 u 2 u 3 like this. So, you 

look at the AAT values here plus the delay plus this you take the max, you take the 

maximum, but when you are calculating the required arrival time we do the reverse way, 

for every vertex V we are looking at the other direction, if there is a fan out connection. 

So, there is a fan out of 3. Let say just call it u 1 u 2 and u 3. Now here similarly you see 

what is the required arrival time for these nodes, subtract the delay of these lines subtract 

the delay of this gate. So, what RAT value will be getting here will be the minimum of 

these. So, for calculating required arrival time you have to calculate minimum because 

whichever is earliest you have to get V ready by that, but for this you are estimating the 

maximum delay you need to take max, right. 

So, looking at the definition again, you can see just what I mentioned just now, at AAT 

at determined from multiple paths from upstream input; that means, which are coming at 

the fan in, but RAT is the determined from multiple paths at the fanout side this called 

downstream. So, the expression for RAT is just this. The RAT value of the output nodes 

minus the delay of the node, and you take the minimum of that right. So, let us let us take 

the same example to work it. So, we assume that the RAT value that is given to us of the 

final node is 5.5. So, I am assuming in this diagram. Let us come to it I am assuming that 

the RAT value is 5.5. So, in red we are marking RAT required arrival time. So, let see 



 

 

how the RAT value of the other nodes can be calculated. So, what I doing from here 

when you come here we see that the weight of this node is 0.2. 

So, this signal at the output should be ready at time 5.3. Right now from here when you 

come here you see. So, so at the output it was 5.3 the delay of the gate is 2. So, it is 5 

point it is a 3.3 and 0.2. So, here it should be come at 3.1. Similarly, here 5.3 minus 2 is 

3.3 minus 0.25, 3.05. So, here it will be 3.05. So, in this way you go on calculating. So, 

from here you come here minus 1, 3, 3 and this 1 it will become 2, but there is another 

path. So, you calculate both the path which one is smaller. So, you calculate like this. So, 

it will be 3.1 minus 2, it will be 2 0.1 minus 0.1, 3-point minus 2 it will be 1.1 minus 1 to 

1, and this side would be 3.05, minus 2 it will be 1.05 minus 0.3 it will be 0.75 this is 

smaller. So, the value here will be 0.75 this smaller minimum. 

Similarly, you proceed 3.2 minus 2 minus 0.15 this will become 0.95. Similarly, this will 

become minus 0.35. You see one value is becoming negative here 0.75 minus 1 minus 

0.1 and here it will become 0.95. And finally, at this dummy node it is minus 0.35. These 

are the required arrival times right. So, now, we are mentioned that we can estimate the 

slack by subtracting AAT from RAT, RAT minus AAT. So, I am showing this slack 

computation here. 
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Now, coming back to the slide, we for every vertex v belonging to capital set of vertices 

the requirement is the actual arrival time should not be grater then the required arrival 

time. So, for every node we calculate the slack the difference. So, slack can be positive 

slack can be negative. Slack positive means it is all right. We are not violating the 

constraint, but if it is negative which means that there is a problem. So, all paths with a 

negative slack they are refer to as critical paths. Because it is the critical paths we have to 

look at it very carefully, and try to adjust its so, that the slack again becomes 0 or 

positive. So, whichever path is having a negative slack this is our way of identifying 

which path is critical. Because you see there can be millions of paths the designer cannot 

tell that well these are my critical paths it is not possible. 

So, static timing analysis will give you a quick way of telling which of the paths are 

critical and which are not right. 
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So, this diagram actually summarizes. So, exactly what I worked out, in this diagram in 

blue I am showing the actual arrival times, in this brown I am showing the required 

arrival times, and in red I am showing the slacks, this a AAT minus this RAT minus 

AAT. So, you see that other than 2 nodes a and c all the other nodes are having negative 

slacks. So, I have to make some adjustments in my circuit. So, that these negative slacks 

become positive again this is what we want, but my static timing analysis gives me a 

result like this fine. 
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So, the current practice what you do nowadays is that not only the signal transitions and 

the delays, we separately look for rise time and fall time delays. Because you see I just 

mentioned during the last lecture, whenever there is a signal transition taking place in the 

output of a gate actually it is driving a load capacity. 

So, it is either charging through the pull of network or discharging through the pull down 

network. Now the resistances of the pull up and pull down network may be different 

which means, different rise time and fall times. So, the delays when a signal is going 

from 0 to 1 and going from 1 to 0 may need not necessary be equal, they can be different 

also. So, a more realistic you can say means analysis of the delays should consider the 

different signal transition separately, because the way gates are designed gates are 

modeled those delays can also be different right. So, this is one thing you should 

separately consider rise delay and fall delay. And you can also you should incorporate 

signal integrate extensions to the simple analysis we just now consider, which means that 

if a neighboring wire changes state there will be a capacity of coupling on some wire and 

that wire can also incur some additional delays. 

So, usually you need to keep some windows which means the neighborhood. You should 

try to keep track of which wires or which lines are near to each other. So, that transition 

in one line can affect the delays in the other line, that modeling is also required. And 

another method which is also used sometimes called statistical, static timing analysis 



 

 

which means I am not fixing some values in the wire and gate delays, but I am giving a 

range. I am assuming it is a random variable and representing them by a probability 

distribution. So, probabilistically I am calculating the delays and these slacks. So, it gives 

a range actually not exact value it can give me a range. 

(Refer Slide Time: 33:20) 

 

So, broadly speaking the static timing analysis is a very useful tool, but it suffers from a 

couple of drawbacks. First is that we assume that there is a clock, and we run timing 

analysis on the combination circuit block between pairs of registers of flip flops. 

So, if there are asynchronous sub systems in a design which design require a clock. So, 

we cannot apply a state to those. Secondly, we are considering all paths to be equal; that 

means, there is a constant sensitization of a path we shall be looking at later. So, what 

you are saying is that we are trying to consider all paths and try to calculate RAT, AAT, 

satisfying some constraints some of them may be phantom constraints, phantom is virtual 

it can never happen. We consider that this path looks to be very long, let me try to 

optimize, but in practice what may happen signal will never flow to that path. So, if you 

can identify those path we can leave them out from our calculation. 

So, maybe some of the efforts that we are putting in are not actually required right. So, 

there are 2 kinds of such thing, one is called false paths that are never activated. And 

some paths may be multi cycle paths. Which means the designer deliberately design in 



 

 

such a way that between 2 flip flops signal transitions will require 2 periods, 2 clock 

periods not one. These are sometimes called multi cycle paths. So, in our next lecture we 

shall be looking at some of these draw backs and how to rectify them. 

Thank you. 


