
VLSI Physical Design 

Prof. Indranil Sengupta 

Department of Computer Science and Engineering 

Indian Institute Technology, Kharagpur 

 

Lecture 24 

Clock Design (Part 1) 

 

We shall now start on discussion on clocking in digital circuits. Now when over the next 

few week actually we shall be talking about various issues related to clocking and timing 

and cross talk and so on and so forth. 

Clock is a very important component of any digital systems that we use today because, 

as you know most of the circuits and systems that we talk about that we use in practise 

are sequential in nature. So, there are lot of events which are going on inside the chip or 

the circuitry, and everything is controlled by a clock; a clock signal which acts as some 

kind of a synchronizing master for the entire system. Faster the clock faster would be the 

operation. 

So, when we talk about clock there are a number of issues that we need to consider, of 

course, what is a clock signal? What are the different aspects related to the speed of 

operation of the circuit? What are the different kinds of parameters that you define with 

respect to a clock? And of course, we shall see later on that when we talk about high 

performance circuit which are very common nowadays we want to run a circuit as fast as 

we can; which means the delay of the circuit the clock frequency can be increased as 

much as possible. Of course, within some other limits of power consumption that will 

talk about later again. 

So, we start our discussion in this lecture about Clock Design. 



(Refer Slide Time: 02:17) 

 

As I said clocking is the basic concept behind synchronization in digital system. So, any 

sequential circuit all most all the sequential circuit today are synchronise in nature in 

contrast you can have a synchronise system which are of course much more difficult to 

design and control, although they might promise better or a higher speed it is extremely 

difficult to design and to verify such circuits and systems. 

So, almost all the systems that we talk about in terms of synchronise circuits are 

synchronise in nature. There is a clock which controls all operations. So, there are a few 

very important clocking related parameters that we shall be talking about namely; skew 

and jitter. There are a number of delay constraints that also we shall talk about which are 

some kind of max constraints and min constraints these are called setup and hold times. 

And we shall talk about some of the factors that affect this skew and jitter kind of 

phenomena. 



(Refer Slide Time: 03:37) 

 

So, this is what I talked about; most of the chips that are that are used today are 

synchronise in nature which means there is a reference clock typically there is a single 

clock in many systems there can be multiple clock phases which are generated from a 

single external source. So, all the internal activities of the chip they are synchronized 

with respect to the clock that is applied from outside typically. So, the clock signal is 

used to synchronize the storage elements, the flip flops because you know that when you 

have a flip flop for example. 

(Refer Slide Time: 04:22) 

 



Let us say I have a D flip flop which has a D input and a Q output and there will be a 

clock input this is clock. So, here whatever I apply to D that will get stored inside the flip 

flop in synchronism with a clock. So, when I say the clock signal so the ideal clock 

signal will be like this it would be get periodic signal that we go up and down with 

certain time period let us say T. So, depending on the type of flip flop these flip flop can 

be activated either at the rising edge of the clock whenever the clock signal goes from 0 

to 1 or whenever the clock signal goes from 1 to 0. So, when it is negative edge-trigged 

we usually use a bubble at the clock signal clock input to indicate this. These are 

typically called edge-trigged flip flop. 

Now in contrast we can have a lache where this storage is not controlled by the edges of 

this clock but by the level, as long as the clock is high this flip flop or lache is open 

whatever is coming input in the at the input will get stored. And the last value, so after 

clock goes down that will be the value that will get stored finally. 

The next thing that we talked about is pipelining. Most of the system that we used today 

they are highly pipelined, they are pipeline systems or pipeline processors various kinds 

of. So, in a typical instruction pipelining for example; all the processors that we talk 

about today they use pipelining internally to improve the number of instructions that we 

executed per second it improves the throughput. And aggressive pipelining leads to 

higher frequency operations, I will try to explain this. 

(Refer Slide Time: 06:44). 

 



But how a pipeline looks like? A pipeline looks like something like this, this is an 

example of a two stage pipeline this black shaded regions are the two stages and there 

are some registers storage elements in between there are controlled by a clock, and this is 

a four stage pipeline. So, what is the basic idea behind the pipeline let me try to explain 

with the help of a simple this example. 

(Refer Slide Time: 07:18) 

 

Suppose I have some computation that I want to perform let us call it S. So, I apply an 

input I get an output. Suppose the time taken to process one set of data is T, therefore for 

n data items; so what will be the total time let us call it time n, this will be n multiplied 

by T. Now what I do, what I say is that instead of this single stage I divide this 

computation into smaller steps. So, let us take as example four. So, I call them S 1, S 2, S 

3 and S 4. So, the input is coming the output of S 1 is going to the input of S 2 output of 

S 2 is going to input of S 3 and so on. 

So, the idea is follows this whole computations S 1 I am as if dividing up into four parts; 

so I called them S 1, S 2, S 3 and S 4 it is not like I am multiplying hardware four times 

same hardware but I am partitioning it into four parts, which are approximately equal 

complexity in terms of time. Now in terms of data item let us say the input data are 

coming one two three four like that so it works like this, these are the times steps let say 

the time taken to for one stage to complete let us call it small t, so t 2t, 3t and so on. 



What will happen? The first let us indicate these stages S 1 S 2 S 3 and S 4. So, the idea 

will be like this; this S 1 will start working on data set 1, after it finishes it will go to S 2, 

n after it finishes it will go S 3, after it finishes it will go to S 4. Now when this S 1 

output of S 1 goes to input of S 2 the idea of pipelining is I want to start the second input 

computation in S 1, in the same over lap fashion. Similarly when this goes to S 3 I want 

to start 2 here and start 3 here. So, in this way this will go on in a overlap fashion, in this 

way it will go on. You see after four times steps the first output is generated, and after 

that in every time steps one output will get generated. 

So, for n data items you can have a calculation like this the total time will be number of 

stages here 4 minus 1, this is the time that is taken for the pipeline to fill up plus the 

number of data because after this initial time of 3 I will be getting 1; output every clock 

plus n whole multiplied by t. So, it is approximately n plus 3 right. See this n T you can 

say this is approximately equal to n into 4t. So, you can see in the same time I am able to 

have a speed up of about 4. So, this implies a speed up of approximately 4 equal to the 

number of stages, but of course in order to isolate these stages we need to have register 

stages in between the stages; this will be feed by a clock, this will a clock signal. 

This is a basic idea behind pipelining, and almost all systems that we see today as an 

internal pipeline structure because of efficiency considerations, because of throughput 

increase in throughput that you get by doing that. So, this is the basic idea. You can see 

that may essentially we have several S 1, S 2, S 3, S 4 blocks which are combinational 

circuits and there are some registers or storage elements in between. This is how a 

typical circuit today looks like. So, this will motivate you into appreciate the examples 

that we that we shall see later on, because we shall see later on essentially what we have 

we have two storage elements with some combinational circuit in between. 

So, in the lowest level there will be two flip flop with small combination circuit in 

between. So, if you can analyse that small circuit you can also analyse a pipeline kind of 

architecture which basically has a very similar structure, fine. 



(Refer Slide Time: 13:11) 

 

So, another issue also let us also talk about. This is something related to the performance 

of a processor. So, here we are talking about a CPU, a processor which is executing 

instructions. Well, similar kind of discussion can apply to other kind of digital circuits 

also, but we are simply talking about processor here. 

So, the total execution time here will be the product of number of instructions, 

instruction count, number of clock cycles required to execute every instruction this is 

called cycles per instructions multiplied by clock period clock cycle time. So, if you 

multiple this three things together you get the total execution time for a program. Now if 

I want to make a processor faster; that means I want to reduce the execution time; so how 

I can do it I can do it in three different ways: I can either reduce the number of 

instructions. This I can do by modifying the instruction set architecture. 

Like for example, suppose I have a computer where I do not have a multiply instructions, 

so to multiply I may have to use a number of instructions. But if I move to a new 

instruction set where there is multiply number of instructions will be less; that is one way 

to reduce IC. Reduce cycles per instruction: well here we can have a better pipeline, 

deeper pipeline increase number of pipelines stages make the processing more 

overlapped will be getting greatest speed up or so. Number of cycle needed per 

instruction will go down. 



And of course, when you talk about reducing the time period clock period or CCT it 

dependence on how you are doing logic design, this is something which will be the topic 

of our discussion primarily. And of course, on the fabrication technology; better 

technology will mean faster circuit which will mean faster clock. But technology is 

sometimes not within the control of a designer; designer can play with the logic design 

with the gates with the flip flops and find out ways to make circuit run faster without 

errors; that is what you want to look at. 

So, our primary focus will be on the clocking issues specifically the third one reduction 

of CCT. So, how you can do this? 

(Refer Slide Time: 15:48). 

 

Well, I talked about edge-trigged flip flop. There are a few statements you are making 

here of course will be explaining this little later in more detail. First is that most of the 

circuits that we use today there are based on edge-trigged operation. That means, the flip 

flop gets trigged whenever the clock goes from low to high positive edge-trigged or from 

high to low negative edge-trigged. So, data living at a time T let us say must arrive at the 

next flip flop. Well after t plus T; T is the clock period. There is something called once 

the consequence setup time this we shall see later, just let us ignore this for the time been 

now right now. 



(Refer Slide Time: 16:50) 

 

So what we are saying is that, data must arrive at the next flip flop one setup time before 

t plus T. Well here we are again talking about that pipeline kind of architecture. So, you 

stick to this kind of an architecture where I have stage which is a combination circuit, I 

have a register let us say R i, I have another register let us say R i plus 1. So, the output 

of this goes input of this output is goes to the input of this. And I have clock signal that is 

used to clock register as well as this register. And T is the time period of the clock. This 

is t. 

So, what we are saying is that; whatever data that is living here let us say this time is 

small t so it should be ready, suppose these registers are all leading positive edge-trigged. 

So, when the next stage comes before that this data much be ready in the next flip flop so 

that the correct output will get stored. So, this capital time T; of course, there is 

something on setup time I shall talk about later, it is the properties of the storage 

elements. So, we have to give some you can say means provision with respect to the 

clock period to take care of this something called setup time this we shall see later; a 

little later. 

So, basically the clocking relationships are like this; delay from each input flip flop to 

each output flip flop of combinational block, which means for a pipelines circuit the 

input register to the output register of a stage should be less than T, ignoring set up if you 

have setup. So, T will be become a little less. So, this we shall see little later why T is 



becoming little less. And another important property of the clock signals this also we 

shall be addressing later; that if there are many flip flops are register in circuit. So, what 

you want ideally is that the signal should reach all flip flops all most at the same time. 

So, if this cannot be ensured then the correctness operations can be compromised. So, 

this is also one very important design parameter for clock circuitry that whenever I want 

to feed the clock signal they should all reach there almost at the same time. This is 

something we shall be discussing later, not right now. 

(Refer Slide Time: 19:43) 

 

So, this is what we are saying that we have a clock signal coming starting from time T, t 

plus capital T is the time period t plus 2T. So, you have a stage let us consider one stage 

which essential is a combinational circuit, with a register before that, register after that, 

this clock comes. And this time T should be large enough so that whatever is the worst 

case of the delay of the combination circuit that computation should be complete so that 

whenever the next edge comes here the correct output should get stored here. 

So, if this is ensured only then the pipelining should work properly that the output of 

stage 1 should go to stage 2, stage 2 go to stage 3 because, the next data is also coming 

parallely. So, there will be overlap kind of execution as data 1 goes from stage 1 to stage 

2 data 2 will come into stage 2. So, there should be synchronization or a lock step 

movement of the data. If the clocking and delays are not absolutely synchronized there 

will be problem. If do not give sufficient time for a stage 2 finish it computation then 



may be the wrong output will get stored in the output register; that we should be very 

careful about. 

(Refer Slide Time: 21:08) 

 

So, let us look at skew and jitter first. These are two parameters which relate to clock 

distribution. So, what do mean by clock distribution? 

(Refer Slide Time: 21:24) 

 

Clock distribution essentially means let us say I have a chip. As I said normally we apply 

a single source of clock from output, and inside there will be some circuitry which is 

allows this clock signal to go to several places in inside your chip where you need the 



clock signal to go. So, this clock signals will need to go here, it needs to go here, need to 

go here, to all this points. So, this is one property that this clock network should follow 

or ensure. 

And another thing is that as I said that the clock signal should reach all the l points 

approximately at the same time, because if it is not ensured then there can be some error 

in computation. Let us see these two terminologies skew and jitter which are related to 

this distribution problem and how are they related. 

So, as I said that the clock provides the common reference signal it may be distributed all 

throughout the chip, because it is distributed to all throughout the chip the total length of 

the clock net can be pretty large, and this will lead to several physical manifestations of 

the same signal. Various kinds of problems may arise because of this. So, what kind of 

problems? First is skew: skew says maximum delay different between any leaf nodes on 

the clock network. What does this mean? 

This is the clock network, the clock is coming here it must reach everywhere. Let us say 

this is the point x let us say this is the point y. So, what might happen is that in a point x 

the clock signal might be like this. So, what you may be see that because of difference in 

delay along different paths when clock reaches in y there can be delay like say the clock 

is delayed by some amount that depends on the addition delay on the path. And this is 

what is called as skew; the difference what the difference in the delays that whenever I 

am feeding a clock it is reaching the different end points of the leafs of the clock network 

at deferent times, this is what is called Skew. 

Similarly, you can have jitter: let us say here I am looking at a particular point not both x 

and y, but particular point x. So, what I you can see is something like this let say I have a 

point x where the clock is coming, let us say I find that at the first clock is coming after a 

delay of T, the second clock is coming after delay of point 9 T, third clock signal coming 

after delay 1.1 T. So, the time period for the same leaf node the successive clock pulses 

are coming they should all be coming ideally with the period of T, T, T, T that gap, but 

there is a variation in delay across clocks across clock pulses that is called jitter. 

Jitter is a variation in the clock cycle time for a single leaf node, and skew is across more 

than one leaf node there can be a variation in delay clocks can appear at various times. 



These are the two problems which are important and if not handled or tackled properly 

the circuit might not work in a proper way. So, let us see. 

(Refer Slide Time: 25:45) 

 

This is what skew and jitter as I have talked about they depict diagrammatically. So, you 

see this is a clock signal, where instead of ideal vertically rising vertically falling were 

showing slow rise and slow fall which are the typical shapes of the clock signals, 

because there will be a finite rise time and finite falls time because of resistive and 

capacity affects. And the actual clock what I am saying is that the time period is still T, 

but the edges are getting delayed. 

So, the ideal clock should have come here but because of some additional delays the 

clock is reaching after some delay, this is called skew. But this skew delay is the same 

for all the successive pulses. But jitter says the first edge is coming after delay of this 

much the second is coming after delay of something more this plus this; this is called 

jitter because the clock edges are coming not with a delay of T where t plus jitter and the 

jitter can vary randomly; this is what jitter means. 



(Refer Slide Time: 27:07) 

 

Let us now look at something called setup and hold times that concerns storage elements. 

(Refer Slide Time: 27:20) 

 

So, what we look at is that a circuit like this let us say. Again I am talking taking 

example of a pipeline there are register stages and there is a combination circuits. So, let 

us name this two clock signal separately; I am calling this as driving clock, this is as 

receiving clock. And this is T logic is the delay through this logic circuitry or stage, let 

us see. 



So, logic evaluation begin at the rising edge of driving clock why, because when we get 

the rising edge of driving clock that whatever is the input that is coming from the 

previous stage that will get stored in this register and this logic stage will start its 

calculations or computation. So, logic evaluation begins at that time. 

So, for correct operation the logic signal or logic circuitry or must complete it 

evaluations before it reaches the flip flop and next stage of receive clocks comes. What I 

am saying is that, there is a delay of T logic and when this logic circuit has finish its 

calculation it must receive reach this point, and then only this clock should come 

otherwise some wrong value might get stored. 

Now what we say, they say something called a set of time. So, every flip flop has some 

delay, delay with respect to what let a clock signal comes the input data does not 

immediately get stored in flip flop there is a delay after which the data gets stored. And 

also the input data has to be kept stable for minimum amount of time only then it will 

stored correctly, otherwise wrong data might get stored. This is the so called setup time. 

So, what the setup time defined as is? It is the minimum time the signal needs to be 

stable before it can be captured by flip flop. And when you are calculating the setup time 

you should also take care of this skew and jitter between the drive clock and receive 

clock. So, this we shall see slowly. So, look this timing diagram again; this is the drive 

clock, this is the receive clock. So, what we are saying is that; this is the delay of the 

logic maximum worst case delay of this stage. 

So, from this edge whenever drive clock goes from 0 to 1 these stage the starts 

calculating. Suppose it takes this much time T logic is the total time when the data is 

available in the output of this logic circuit. After that I must keep this value stable 

minimum for this T setup amount of time, otherwise it not getting stored properly here. 

So, this is the requirement it says that you must wait for the maximum time the logic 

circuit requires to compute the data then you must wait for a minimum amount of time T 

setup which is the setup time of the flip flops here, then only we should apply receiving 

clock. The receiving clock edge should not come before this, if it come before this then 

there can be error. 

And this time can further extended if we take into account skew and jitter, because if 

skew and jitter there can be some additional delays in the clock. So, receiving clock 



might get delayed. So, what will be your timing requirement? Your total time period 

should be greater than equal to the worst case delay of the logic circuit; that means, the 

stage of the pipeline plus this set time of the flip flop receiving flip flop plus the 

maximum clock skew plus the maximum jitter. 

So, take you incorporate all of them add them up your time period should be at least 

greater than that, because whatever variations can be there and whatever minimum setup 

requirement is there you must provide that much time otherwise the correct data may not 

get stored in the receiving flip flop, right? 

(Refer Slide Time: 32:02) 

 

So, in a similar way you can have another constraint that is called a min delay constraint. 

You see setup time was what? Setup time says that you have a flip flop data is coming in 

the input, your input data must be stored for a minimum amount of time before the clock 

comes that minimum amount of time is setup time. 

Now, hold times says the other around; after the clock edge comes you have to wait for 

some more time. See it says that this storage element will have to hold their output signal 

for a minimum period of time. 



(Refer Slide Time: 32:49) 

 

So, if you do not do it then the following logic block like a same kind of scenario driving 

clock receiving clock we shall be explaining with this. So, this hold times says this is the 

definition. So, the ideal is that signal should not go through the logic circuit too fast and 

get captured by the rising edge of the receiving flip flop of the same cycle. This is 

something let me let me explain this example again; take this example. 

So, I have this driving clock, driving clock it comes T is the time period. So, what are the 

timing requirements? After the driving clocks come the hold time you must, this hold 

time is the time you must keep the input data stable before the clock comes. And let me 

talk like this. 



(Refer Slide Time: 34:00) 

 

Because I have clock like this it is explain here this is the clock edge, this is the clock 

edge. So, what I am saying is whenever I have a data coming, so this is time the clock 

edge is coming; what I am saying? I must keep my data stable minimum time before this 

is my setup time, and after the edge comes I have to again wait for a minimum time that 

is my hold time. These two times I must provide then only my flip flop operation will be 

guaranteed to be faithfully correct. 

So, some minimum time before the edge, some minimum time after the edge these are 

setup and hold. You see in this diagram we have illustrated the hold time. After the edge 

comes a minimum amount of T hold time must be provided, and only after that the logic 

calculations (Refer Time: 35:06). So, what I am saying is that whenever the driver clock 

comes so earlier we have assumed that whenever the driver clocks comes the logic 

operation start calculating immediately. But now we are saying no, not immediately after 

the clock comes let us wait for another time T hold before this logic operations is 

allowed to start because, that time T hold is required for the output to stabilise. 

So, whenever the clock comes T hold is that time that is required then only this T logic 

will coming this is the T logic delay, and then you take care of this skew and jitter. So, T 

logic plus T hold is the total time; T logic is the delay of this logic and T hold is a 

minimum time we should wait before we should start the calculation. This two taken 



together should be greater than this time. If this is not ensured this operation of this 

circuit might fail. 

(Refer Slide Time: 36:23) 

 

Now, let us look at some of the quantitative views of skews and jitter whatever we have 

talked about so far. There are a few constraints that need to be satisfied; let us look at one 

by one. 

(Refer Slide Time: 36:43) 

 

Again we consider the same kind of the scenario: there are two register stages and there 

is a logic circuit in between, this is logic, this is a storage element R 1, this is another 



storage element R 2. So, they are connected like this. So clocks, well this clocks are 

same clock but I am showing them separately because there can be some skew and jitter 

between them, so there can be some delay between clock 1 and clock two because of 

skew and jitter. So, we have a scenario like this, so we have now looking at skew jitter 

setup and hold times there are a few constraints that need to be satisfied for correct 

operation of the circuit. Let us summarize the constraints once more. 

So, the first constraint is like this; this is the maximum delay constraint what it say is we 

told you about, the total logic circuit delay the setup time delay then you take care of this 

skew and jitter of the receiving clock, your time period should be at least greater than 

equal to this. Now logic and setup if you combined together let call a T logic plus setup, 

skew jitter if you combine together call it skew plus jitter, they should be less than equal 

to T. This is one constraint. Setup time is what? Again I am repeating before clock how 

much time you have to wait? You have to feed the data and keep it stable, that much 

time. 

So, here when you are talking about a scenario like this, this logic circuit is feeding data 

to in next stage so that setup time will apply to R 2 now. When data is coming here the 

data must be kept stable for minimum amount of time T setup before the clock here 

comes. Similarly for R 1, this stage before that whenever the data come there will be 

component T setup here; so logic plus T setup plus that jitter and skew that whole thing 

that should be taken care in that time period T; this is the first constraint. 

So, with this you can say that the maximum operating frequency with skew and jitter will 

be 1 by this, this will be the minimum delay. So, if you take the reciprocal of this 1 by 

this, this will be the maximum frequency with this circuit can operate. And if you ignore 

this skew and jitter for the time being theoretically the maximum frequency would have 

been just the logic and setup times this 1 by T logic setup time. 

So now, how much frequency you are losing? You see now we are looking from a design 

point of view, see as a designer I have designed a circuit, I want my circuit to run as fast 

as possible so how do I measure the fastness of my circuit, the maximum clock 

frequency. So theoretically, well initially I did not thought about skew and jitter. So, just 

assuming that clock are coming and getting distributed very nice way I have estimated 

that where my maximum frequency should have been this, but after designing my circuit 



because of skew and jitter what I find that I cannot go up to that maximum frequency, 

because if I do that due to skew and jitters some of the stages might not stored the data 

correctly. So, I have to delay the clock a little more. 

So, the actual frequency has to be reduced a little bit; that is the price I am paying. So, 

here in absence of skew and jitter I have this. You can say that your incurring something 

call a frequency cost; what is frequency cost? It is the difference in the frequency the 

maximum frequency that you could have achieved if skew and jitter where not present 

minus the actual frequency in place of skew and jitter divided by f max. So, if you do a 

simple means arithmetic on this the expression come to T skew jitter plus T logic setup 

plus T skew jitter. 

If you can reduce skew jitter as much as possible, this frequency cost will also reduced 

accordingly. One of the main challenge for the designer is; is how to design the clock 

circuit, how to design the clock network such that your skew and jitter are minimised: 

because you can say that well skew and jitter how this can be under my control because 

once I fabricated a chip I do not know how much delay it will be taking, but at least you 

can try, you can try to ensure that the length of all the clock wire are approximately same 

so that the estimated delay should be the same. 

So, the delay variation should be minimum, this skew should be less. This is what you 

can expect. So this is what, and just one sample data I am showing. 

(Refer Slide Time: 42:34) 

 



So, for maximum frequency of 1 gigahertz this is one sample plot which I am showing; 

that as this skew jitter increases from 0 this numbers are picoseconds up to 240 

picoseconds you can see the frequency drops from 1 gigahertz down to about 800 

megahertz. So, as skew jitter increases your maximum frequency also goes down. One 

thing that will be discussing in our subsequence classes, in our clock design, clock tree 

design in this kind of lectures there we shall see that how you can design our clock 

circuitry in such a way that this jitter and skew can be reduced as much as possible, 

because that is the very important component to reduce the frequency cost to the extent 

possible. 

So, whatever I have talked about today in this lecture we have tried to introduce the 

concept of frequency cost means, how much frequency we have to sacrifice; that means, 

the maximum speed of operations in presents of skew and jitter. The other parameters are 

something which we do not have any control about. For example, hold time and setup 

time these are characteristic of the flip flop, the storage elements, those time we have to 

provide, those are mandatory delay requirements, but skew and jitter is something which 

you can play around with. 

So, we shall be looking at some more examples in our next lecture so that you can have 

better feeling about how we can do some kind of trade out in terms of delays in other 

parameters so that you can avoid some time violations, you can you can able to run your 

circuit in higher speeds and so on. With this we come to the end of this lecture. 

Thank you. 


