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Lecture - 02 

Design Representation 

 

So, let us continue with a discussion. So, in this second lecture the module we shall be 

talking about various design representations. So, the topic of this lecture is design 

representation. 
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So, actually what we are talking about here is that design we have a design, this 

design can be at any level it can be at a very high level design, it can be an 

intermediate level design, it can be a very low level detail design, but what we want to 

says that design at any level can be visualized or viewed from 3 possible angles. 

So, we say that the 3 angles are behavioral, structural and physical; behavioral means 

what the design is suppose to do; structural is how it is the implemented in terms of 

the circuitry or the net list; and physical is the actual implementation whether is the 

implemented as a chip, or as a module, or as a cell and so on and because of the 3 

angles it was proposed that it can be represented by a so called Y-diagram. So, let us 

see I am a how this Y-diagram looks like, and how it can represent the various aspects 

of the design from this 3 different angles. 
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This is how a Y-diagram looks like where is you can see the 3 arms of the Y 

corresponds to the 3 angles of visualization behavioral, structural, physical. 

So, when you talk about behavioral, we basically talking about how circuit is suppose 

to behave. We are not going into detail as to how you are implementing it or how you 

are designing it. So, some typical ways to represent behavior are programs well as in 

high level description languages like very lower PHDL. Specifications in various 

form for example, Boolean equations can be specifications, truth tables, finite state 

machines and etcetera these are ways to specify behavioral. Structural domain says 

some kind of net list inter connections of registers, adders, gates and so on maybe 

higher level modules processor memory; and in the physical domain we are talking 

about chips or boards the basic cells transistors and so on. 
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So, any design can be viewed from any one of the 3 angles. Let us look at these 2 

diagrams because these 2 diagrams actually show how we can interpret the Y-

diagram. Just you look at this first diagram on the left, here as you can see we have 

drawn this imaginary circles these are concentric circuits, which are touching one of 

the points along each of the 3 arms of the Y. For example, you can see in the 

behavioral level we have a note called systems, the equivalent node in this structural 

level says CPU memory and equivalent one at the geometrical level says chips or 

physical partitions. So, what does this represent, I am just trying to show you. 
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Say I have computer that I want to design, this computer can represent my behavioral 

few. So, I specify how the computer should behave. Now the from another angle this 

computer can be visualized as comprising of a central processing unit CPU, it can 

consist of one or more memory modules, and may be an I O module and I O 

processor. So, from another angle the same computer can be viewed as an inter 

connection of very high level functional blocks like CPU, memory and I O this can be 

your structural view, but this same design when it comes down to physical view, it 

can be one chip representing the processor, there can be another chip representing the 

first memory, chip representing the second memory and may be 2 chips representing 

the I O, so you will be having some kind of inter connections between them 

something like this. So, this will be your physical. 

So, what I mean to say is that the design at this same level of abstraction can be 

viewed from 3 different angles; One as the behavior, other as a net list, and the other 

as some components which are actually manufactured and the system is implemented 

by inter connecting them like chips in this case right. Similarly you can have some 

other examples or other level for example, if I give you some Boolean equations say f 

equal to a into b plus c, this represents of behavior, now I can represent this in terms 

of some gates that would be my structural behavior and this gates can be finally, 

implemented using either NAND or NOR or some kind of CMOS cells, that will be 

the physical representation, so we can have this view from any level of abstraction.  

So, in this diagram if you come back to it; so as you move towards this center you are 

going into more and more detail for example, here you talk about logic here and in 

structurally you talk about a loose and registers, and here you talk about macros and 

floor plans. If you go down you talk about transfer functions, gates and flip flops, 

cells and module plans. So, as you move down towards the center, you are refining or 

design and making it more and more detailed; this is one way of interpreting the Y-

diagram. Now this Y-diagram can also be expressed or interpreted in a slightly 

different way as the diagram on the right shows. 

See here the arm here shows behavior, this is structural and this is physical or 

geometric domain. Now you see instead of circle we have drawn some kind of a helix 

which starts form here and it moves down towards the center. This actually represents 

top down design, how? It says that is start with a behavior lets and algorithm, this 



algorithm specification you first synthesis or decompose into structural design which 

consist some inter connection of as I said some processor, CPUs, memories, I O 

etcetera. Now this net list would translate in to physical domain where you do some 

kind of a chip level floor plant, like you decide that on your chip you can place your 

processor here, first memory here, second memory here the I O chips here. So, you do 

a tentative floor plan on the silicon, how you will be placing the different very high 

level modules here.  

Now from here again you go follow this part, this says finite state machines not only 

finite machines, it can be some kind of logic specifications also. So, each of this 

blocks you again go to behavioral domain and you try to specify what this blocks 

actually try to perform; what is the functionality of the CPU, what is the functionality 

of the memory and so on and each of these again will be traversing this part this 

synthesis, you will be translating them into processors, ALU registers etcetera register 

ALU multiplexor from here again you will go to placement of the modules refining 

the placement; again you go to the description of the modules; again you go to 

description like gates or some cells as will talk about later. 

Then again how to place this cells, then again low level finally, transistor up to the 

layout mask. So, you see if you follow this kind of helix approach from the outer 

more cycle to the inner most one, you are actually following the at exact process 

which typically we follow during the design when we go through so called top down 

design approach, from the high level thing we slowly refine our design and we go into 

more and more detailed design fine. 
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So, let us look at the different levels of abstraction and see how in what this 

represents. Behavioral representation as I said this specifies how design should 

behave, how it should respond to a given set of inputs without specifying or telling 

how they are implemented; to just tell that I want this if I apply a an input of this, I 

should get an output of this is my behavior. 

Now, this behavior depending on which level your specifying, can be specified in 

various ways some of this are mentioned here these are of course, not complete 

Boolean equations, you can have some kind of truth table, you can also have a finite 

state machine for sequential circuits, sequential functions; you can have some 

algorithm with description written in a standard high level language like C, or java, or 

C++, or you can also express this algorithms in the hardware description languages 

like Verilog or VHDL. So, behavior can be specified in any on one of this, but the 

point you notice that in behavioral specification you are not specifying exactly how to 

do you are just telling what to do, what I want, but exactly how to realize it we are not 

telling or is closing that. 
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Now, let us takes some examples, let say we have an n-bit adder, which where 

constructing by cascading n 1-bit adders. So, how you do this? Let us first see. 

(Refer Slide Time: 13:09) 

 

Let say we have a full adder; so how does a full adder work? Full adder has 3 inputs; 

the 2 inputs A and B 2 bits and may be a carrion C, and the outputs are some and 

carry. Suppose if I want to design a 4 bit adder the so called ripple carry adder what I 

do? I use 4 such full adders, and I cascade them in a chain like suppose this is my list 

significant bit, this is my most significant bit and these are the 4 full adders. So, what 



I do? I connect my least significant bits A 0 and B 0 here, A 1 and B 1 here, A 2 and 

B 2 here, A 3 and B 3 here, and you get as the output this some from this side less 

significant some then S 1, S 2, then S 3. 

Now, the carry outs, the carry out from this C Y 0 goes to the carry in of the next 

stage. Similarly C Y 1 goes to C 2, C Y 2 goes to C 3 and finally, C Y 3 that comes 

out that will be your carry out of the final addition. So, this is how 4 bit adder works, 

this is cordial ripple carry adder because the carry might ripple through the various 

stages before it comes out right. So, you can see this was might behavior, and this is 

structural level description where I used full adders at the basic building block and I 

have inter connected them right; which has example as shall show this on this slide or. 

So, here the 2 description that I have shown here, these are the functional descriptions 

of a full adder. 

So, whenever full adder, the sum can be defined as this Boolean equation or A XOR 

B XOR C and the carry is defined as A B or A C or B C; these are the expressions for 

sum and carry in a behavioral fashion. 
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Now, you see this is the first look of a specification of a circuit module using a 

hardware description language; this is very long, this is how verylog program looks 

like. So, I said the carry function is a b or a c or b c. So, you see how I have written a 

module for the carry, you see this syntax is very similar to c like a function I define I 



start with a key word module, then the name of the module, then the parameters. The 

full adder will have 2 outputs carry out this can these not a full adder only the carry 

part, the output will be carry and the inputs will be a b and c. 

So, I declare the input variables, I also declare the output variables then I assign this is 

AND and this is OR, a AND b OR b AND c OR c AND d; now you must say that I 

have mentioned AND and OR. So, this is as good as structural I have mentioned the 

gates, why I call it behavioral description?  
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The reason is if I specify it like this, so I really do not know how this will be finally 

implemented. It can either be implemented as 3 and gets, implementing the 3 product 

terms followed by an OR or it can be implemented using NAND gates alone; both are 

equivalent, both these designs are equivalent. So, I really do not know when we are 

finally, synthesis in the design into the gates, whether you arrive at this or you arrive 

at this it depends on your cad tool, how it will actually translate your specification 

into the final gate level net list. 

So, that is why I say that this is behavioral level description, not a structure level 

because I have not mentioned the exact gate types, I have mentioned the Boolean 

equation a b or b c or c a. 
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Similarly, this is another way of specifying the behavior; here I can specify the truth 

table. So, here also I specifying the same specification for the caddy input and output 

and the convention is the inputs will come first and then the output. So, there is the 

table and n table construct, I give the inputs, then colon expected output. If sum of the 

inputs are do not care I can put question mark; like if a and b are 1 and 1, then 

irrespective of c the carry will be 1. 

Similarly, if b and c as 0 and 0 then irrespective of a, the carry will be 0. So, here I 

can make my truth table short in this way right. So, this is also way to represent the 

carry function in a behavioral fashion fine. 
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Now, let us move to the structural representation. So, structural representation 

essentially tells you how certain modules are components are interconnected, you 

specify some interconnection like these 2 circuits I have shown, these are examples of 

structural descriptions, here I have shown there are 4 3 NAND gets and 1 OR gate 

they are interconnected together, here I have shown 4 NAND gates interconnected 

together. These are examples of structural descriptions.  

Now such a structural description is as I said nothing, but a list of modules or 

components, and how they are interconnected. This is sometimes called a net list, now 

a net list can be specified at various levels like gate level, transistor level, higher level 

and so on. 
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So, we shall take an example. So, at this structural level as I said there can be various 

levels of abstraction like you can have a very high level module, like you if you just 

come back to this example I showed earlier. Here I had 4 full adders, and they where 

interconnected. So, this is a net list of full adders, this is at the functional or module 

level where my full adder is the module then I can have the gate level. 

So, at the gate level I have a set of gates and the interconnection as I have shown in 

the diagrams here gate level. Similarly I can have switch level; switch level means the 

transistor level. So, each of the gate can be converted in to a transistor and circuit 

level means it is a further level of refinement, where you have not only the transistors, 

but also some you can say parasitically means like registers capacitors and so on. So, 

you have a circuit comprising of transistors, registers, capacitors typically that is 

called the circuit level view of the design. Now as you can see as you move towards 

the module level down to the circuit level, more on more details get revealed as you 

move down we get more and more detailed functionality, and clearly more accurate 

representation of the design or the behavior. 
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So, let us come back to the 4 bit adder once more. So, this is the hierarchical 

description of how we have created this structural description. The 4 bit adder let us 

call it add 4, the 4 bit adder we had created by using 4 full adders, these are 4 full 

adders and each of the full adder can be implemented by a carry module and a sum 

module. The second full order can also be implemented by a carry module and a sum 

module and so on. So, as you can see I have seen earlier that the carry module can be 

implemented like this 3 AND gates and an OR gate with the function like this, 

similarly this sum can be implemented as A XOR B XOR C. 

So, now shall see how we can create structural description of this 4 bit adder using 

sum description language like verylog. 
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Let see this. This is the top level description of the 4 bit adder. So, you see. So, at the 

miss at the highest level, what does your adder represent? You are adder will have 

sum carry out, carry in and 2 inputs, X and Y; your sum inputs X and Y or all 4 bit 

numbers that you represent here in terms of the array notation 3 colon 0 means X and 

Y or 2 arrays, whose index values can go from 0 to 3. Similarly s is also and an array, 

but the input carry seen and the output C Y 4 they are single bit, and intermediate 

connections like if you look at this full adder again there were 3 intermediate 

connections between the full adders. 

So, this full adders intermediate connections we can defines some wires, and we 

instantiate 4 copies of full adders add represents of full adder whose description is 

here as you can see, this is the full adder what you have carry out and sum as the 

outputs a b and cy in as the inputs, you have a sum module you have a carry module. 

In this sum module we have sum as the output these are the inputs, carry module cy 

out is the output a b cy in the inputs. So, you instantiate or we include 4 such add 

modules and you see just by giving the variable names appropriately you provide with 

the interconnections right, your output of this B 3 cy out 2 will be the input of this c 

out 2 a B 2. 

Similarly, this will be connected here, this will be connected here. So, the connections 

you can specify by giving the names appropriately. So, as you can see here and this 



diagram once more, the output of one stage is coming as the input of the other; output 

of one stage is coming at the input of the other. So, in this same way here you can 

specify the variable names appropriately, so that this interconnection can be specified. 

Now you will see this is still not a complete description, because we have not defined 

sum and carry; we have defined add we have use add 4 times to create a 4 bit adder, 

but now these are sum and carry. 
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You see here we have defined carry in terms of sum gates, we have not used the logic 

expression any more a b or b c or c a. 

We have said that there are 3 AND gates and an OR gates, the convention is and t 1 a 

b means a b or the inputs, t 1 is the output. Second one a c or the inputs t 2 is the 

output here b c input t 3 output, and the final or gate t 1, t 2, t 3 are the inputs and cy 

out is the output. So, this is the pure structural description, because we have 

specifying the exact gates to be used and how they are interconnected. Similarly this 

sum where gives 2 exclusive or gates first one generates or output t, second one takes 

XOR of t and c generate sum. So, you can see these examples actually shows you that 

how we can create a structural description of a full adder down to the gate level, from 

the behavior 4 bit add a description down to the gate level, you can have a pure gate 

levels structural description. 
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Now continuing at the lowest level, you can have the physical representation. So, here 

at the physical specification as I said that at the lowest level to specify the layout as 

the collection of some rectangles, as I had shown in that example earlier the 

rectangles can be in various layers; it can be in a metal layer, aluminium, it can be 

diffusion layer, poly silicon layer, various different fabrication layers are there. So, 

you have to specify the exact geometries of this layer and in which layer it belongs to, 

that will comprise of your physical description from which you can create the 

fabrication masks and you can go to the fab to fabricative chip using those masks. So, 

as I said the physical layout is nothing. 
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But a collection of rectangles or polygons, where this is not a complete description 

this is the representation, this is only a partial description I have shown, just to tell 

you how the very log description for the physical representation can look like. 

You see here you can specify some line called port, which is carrying a signal x 0 

which is on the aluminum layer, whose width is 1, whose origin is at this coordinate. 

So, in this way you have some primitives for the ports, the boxes, lines everything 

where you can exactly specify which layer it is running on what is it starting 

coordinate and what is it size. So, in this way you can generate the final layout as 

well, this will be final used for fabricating the chip. 
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So, I think we have got a fairly good idea. Now in this I means final diagram design 

digital I C design flow let us have a quick look again, there are various steps of the 

processing design entry, logic synthesis, partitioning, floor planning, placement 

routing these we shall be discussing in the next lectures. 

You see this whole design process can be divided broadly into 2 parts. The first few 

steps are called front end cad or logical design, the next few steps are called physical 

design or back end cad. Now as part of this course, we are more I means concerned 

about the physical design aspects, so we shall be assuming that we already have a 

circuit net list available to us, and from there we shall be carrying on this steps of 

floor planning, placement, routing and the other analysis steps and of course, that 

every step you need to carry out simulation, this things also we shall be discussing 

later. So, we can carry out simulation before your layout is created or after your 

layout is done then also you can extract this circuit and you can do something called 

post layout simulation which will of course, be much more accurate. So, roughly this 

is how things work.  

So, I think with this way we come to the end of this second lecture. So, we shall be 

you continuing our discussion in the next few lectures as well. 

Thank you. 


