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Grid Routing (Part III) 

 

So, we continue with our discussions on the Grid Routing algorithms. So, as I said we 

shall be discussing some more algorithms in this lecture which are more efficient in 

terms of the running time also the storage complexities. Let see. 
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The first one is called Hadlocks algorithm. This this method let me tell you first. This 

is similar to Lee’s algorithm, in the sense that here also we are labeling some cells 

with numbers, but the wave we are labeling, the way the wave fronts are progressing 

are very different because in Lee’s algorithm you just try to recall the basic 

mechanism you are trying to propagate the numbering or the wave front in all 

directions without any consideration as to which direction the target is actually 

located. 

So, if the target was located there you are also propagating wave front in the other 

direction in Lee’s algorithm, but in Hadlocks algorithm you specifically keep track of 

a of the fact that whether you are moving in the right direction or in the reverse 

direction. You always give priority if you are moving in the right direction. So, you 



are avoiding unnecessary expansion of the wave fronts in the reverse direction which 

will; obviously, require much less number of cells to be numbered which of course, 

will result in much faster and times, but let see the basic concept here. So, this cell 

labeling scheme that is used in Hadlocks algorithm, I mean use a something called 

detour numbers. 
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Now, what is a detour? Let me just this explain the concept of detour with the help of 

a diagram first let say. So, I have a source here I have a destination here. So, I want to 

find out a path from S to D like this. Now suppose due to some reason in the, I cannot 

find a path like this. I may see that in order to find a path, I may have to go away from 

d then again I may have to come back towards T a path like this. Now, this move 

where I moving away from D this is called a detour, here I am moving away from D, 

but other than this segment you see nowhere else in this path we are using a detour. 

Say from here we are moving in the right direction, here also we are moving in the 

right direction, but here we are having a detour. 

Now, the number of cells that we are moving away from with respect to D that is 

called the detour number, this is the idea. So, the detour number let see, the detour 

number of a path P that connects 2 cells is defined as the number of grid cells directed 

away from the target. Now you look at the entire path you find out in how many grid 

cells you are actually moving away from the target that will be your number d P. Now 



one thing also you try to understand now in this example. So, you are moving away in 

this path. So, the amount of movement you are doing away you will have to come 

back by the same amount again. So, you were moving away you will again have to 

come back. 

So, that this amount of d p your moving away that d p also will have to added while 

you are coming back. So, that is why the length of the path with respect to the detour 

number here you can estimate as the Manhattan distance between S and T which is 

the expected shortest path which may not be there, that Manhattan distance plus twice 

the detour number. So, once you go to the away direction will have to again come 

back by that amount. So, this is how you are estimating the length of the path, and the 

idea behind Hadlock’s algorithm is that you use the detour numbers to label the cells. 
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So, the cell filling is similar to Lee’s algorithm. The difference is that you fill the cell 

with the detour number and not by it is distance. And this cells which are having 

smaller detour numbers and expanded with higher priority. 

And this another point here. To see in Lee’s algorithm at every step we are labeling a 

neighbor, in the next step the neighbor of the neighbor, but in Hadlock’s algorithm we 

go and labeling as long as you are moving in the same direction in the same step. Like 

for example, as long as where you are moving in the right direction that will mean 

detour number of 0. So, if I see I moving in the right direction I can continually label 



the adjacent cell 0 0 0 0 0 0 in a single step itself. This is the idea, but; however, here 

the path retracing is not so simple. So, you need some data structure you need to keep 

track of some additional information and some degree of searching also. 
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This is the price your p. So, let us illustrate this Hadlock’s algorithm for this example. 

Where here again we are showing this array of grid cells with the black regions are 

interfiled as obstacles. This is the source this is your target. So, starting from S we 

start labeling this cells with detour numbers.  

For look at one thing the S is here T is to the right and to the top of S. So, any 

movement towards right or towards top will not increase the detour number. So, it 

means you are moving in the right direction, but the top is blocked you cannot move 

on the top. The only way in which you can move in the right direction is towards 

right. So, in this way you can move by 2 cells here and here after that again you stop. 

You cannot move in the right direction because right and top both are blocked. 

So, in the first step you are labeling like. This detour number zero; that means, you 

are moving in the right direction you can move only up to this much. After this you 

cannot move any further. So, you will have to make a detour. So, what can be detour 

you can make? So, from 0 we can move this side. 0 you can move this side, from S 

you can move this side, from S you can move to the left. This all will mean a detour 

of 1, mean; that means, one cell you are moving means away from T which means 



like this not only this. So, once you have moved one cell to the left of S and label this 

cell as 1, you I mean as I said that you are free to label this cells as long as you are 

moving in the direction not one as many as you can. 

So, you continue the process from here. So, as soon as you label this particular cell 

has 1, from here you can see your T is to the right and top. So, any cell to the top or 

right you can go on labeling with 1 1 1, because you are not making any other detour. 

Detour is not changing d P is not increasing. So, right you go on labeling till you 

reach here, but if you reach any further this will involve another detour because you 

are going above T. So, now, these will become 2 labels if you want to move up. So, 

you go and go on labeling here as long as your detour number does not increase. 

So, you feel so many cells in the second step. After you have done this the third step 

you have to take another detour; that means, you have either move up or in this case 

move to the left or in this case move down. So, like this, this cells you will be marked 

as 2, 2 here. Now you see from here again you have take another detour to reach T 

because there is no other path in the right direction. You have to move up or here or 

here all 3, but you see this 2 if you move here has 3 in this cell, from there your T will 

be on the right and down say you can continue with 3 3 3 3 3 like this; that means, 

you will get something like this. 

So, here detour number 3 you are getting, but here as you get 3 you can continue with 

3 because this is no further detour here. So, you have got a path, the path will look 

something like this, so where you have taken 3 detours. One detour here another 

detour here another detour here. So, your total path length will be Manhattan distance 

between S and T plus twice into d P which is 3, but as I had said in this case the 

retracing is not the trivial. You have to do some kind of searching of this cells which 

you have labeled. So, I am not going into the detail of that, but just remember that you 

retracing is a little more complex here, but the advantage is that you are means at 

every step you are labeling a number of cells as long as your moving in the right 

direction. 

You are not spreading unnecessarily the labels in the wrong direction. You are 

moving away only when required. Only when you see that you cannot move in the 

right direction. Then only you move away. This is the basic concept behind Hadlock’s 



algorithm in the performance is means of course, better then Lee’s algorithm because 

it labels much less number of cells in general and runs faster naturally, but the 

problem is that the memory complexity or storage complexity does not change much 

because here also you are keeping the data structure as have 2 dimensional array. 
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So, if it is a 2000 by 2000 grid you have to maintain the 2000 by 2000 array to store 

this status of each of this cells right. 

So, these are the advantages these are mentioned, and running time of course, it is 

difficult to analyze exactly, but it has been found that for n by n grid the running time 

for connecting 2 points ranges from means order n which is the linear time algorithm 

to order n square. It of course, depends on where the obstructions are located which 

are the positions of S and T and so on. Now, but this is the average case. 
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Now, let us come to an alternate class of algorithms line search algorithm. Let me try 

to tell you the basic concept here first. Now in the maze learning algorithms what we 

are doing we were basically representing the layout surface of the 2 dimensional array 

where each element of the array represented as cell and we were labeling the cell and 

carrying out some kind of a search. So, that from source we reach the target right, but 

in case of line search algorithm the concept is somewhat different. I am not 

representing the area as a 2 dimensional array any more. I only have the total area 

available to be here.  

Here we maintain information about a number of straight lines. So, our data structure 

here will be different. You have to maintain number of straight lines straight line can 

be represented by the n coordinates to coordinates means the straight line and also. 

You will have to search whether 2 straight lines are intersecting each other. 

If the intersect what is the point of intersection. Well you can your simple coordinate 

geometry for that you already know this is means school math staff that is easy. So, 

let us try to explain the motivation behind it before I explain the salient details. 
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The idea is that suppose I have a rectangular area in which I have to lay out the points. 

Let say I have a source here I have a target here. Well in the earlier case what we are 

doing we were propagating the wave forms labeling the adjacent cells in a grid. So, 

that the numbers finally, will reach T, but here we use a very simple concept just 

assume for the timing that there are no obstacles well in presence of obstacles we 

shall see later. 

What I do from this this point S you just imagine 2 straight lines one horizontal and 

one vertical. These 2 straight lines are coming from S call them S 1 and S 2. 

Similarly, from T you start in a similar way a horizontal and a vertical straight line 

call them T 1 and T 1. Now if we find by well here just again talking about the data 

structure you have L S. L S is set of lines starting from S. Similarly, you have L T 

which is the set of lines starting from T. Now at every stage we check whether any 

line from the set L S whether the intersect L T or not. We say I am not saying this is 

set intersection what you mean to say is that is line from this L whether intersects it; 

that means, what you are checking whether let say L 1 belongs to S belongs to L S, 

sorry L S intersects another line L 2 which belongs to L T. 

So, we are checking this at every step. There can be multiple intersections like in this 

case one intersection is happening here one intersection is happening. Let say we take 

this as the intersection, once we find the intersection we can trace back from there up 



to T and up to S. We can trace the red lines to go up to T we can trace the green lines 

to go up to S. So, you see what you have we have already got a path between S and T. 

The concept is very simple this is how we get a path between S and T. The advantage 

you can immediately see. So, we are not labeling cells we are not using very large 

storage. Only in in this particular example we have to keep track of 4 straight lines, 

means 4 into 2 8 coordinates. And some simple coordinate geometry algebra to detect 

whether the lines are crossing or not if they cross what is the coordinate.  

So, once we have the coordinate you can get the line segments that constitute the path 

of the obstacles. Of course, you have to keep some information about the obstacles in 

your data structure that these are the places where some obstacles are there. So, your 

data structure will be slightly more complex then straight lines not only straight lines 

you also have to represent some rectangles which represent some obstacles already 

placed you cannot drive a line across an obstacle, that you have to follow some other 

path. Let us come back to this now. So, in this line search algorithm the basic idea is 

that just the example that I have shown. So, here is state the something. 

So, assuming no obstacles a vertical line through S and a horizontal line through T 

will intersect and vice versa. So, in semi some horizontal line through a S and a 

vertical line to through T can also intersect. And once we get an intersection you get 

the Manhattan path between S and T that will be the shortest path, but when there are 

obstacles the complexity increases and you may have to draw several such set of 

lines. 
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Now, one point to note in this line search algorithms are there they are very fast and 

so, most of the cad algorithms which do area routing they rely on these line search 

algorithms, but these algorithms do not always guarantee generating the best path of 

the shortest path. And Secondly, they may need backtrackings because you are 

following a path you fine in that you have reach the dead end you may have to go 

back and try an alternate path. 

Such scenarios can also occur and as I had said the routing area and also paths are 

represented by the set of lines and not as a 2 dimensional matrix as in the maze 

routing algorithms. 
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So, we shall be looking at 2 different algorithms the first one we refer to as Mikami 

and Tabuchi algorithm. These are the 2 persons who propose this algorithm. So, here 

let me just explain this step then I will illustrate with an example. So, the 2 terminals 

to be connected are S and T. So, the initialization step let us call it step 0, generate 4 

lines 2 horizontal and 2 vertical passing through S and T. Let us jut work step by step 

with an example. Generate 4 lines passing through S and T. 

Let us take an example like this. See this example this example shows source point 

target point and some obstacles already there. 
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So, the step 0 says we generate 4 lines. So, I generate a horizontal line passing 

through S like this and a vertical line passing through this. I call them S 0 and S 0. 

Similarly, from the target I am using a different color a horizontal line and a vertical 

line. Let us again call it T 0 and T 0. This is the first step. Now as you can see because 

of the obstacles this lines are not intersecting because this lines are getting stopped. 

So, you need some more iterative steps. So, what next? The next step says to extend 

this lines till the hit obstructions or the boundary of the layout. If a line generated 

from S intersects a line generated from T, then a connecting path is found. 

So, you see here we have extended this lines till they either hit the boundaries of the 

obstructions, or the boundaries of the layout. And if the intersect which they are not. 

So, if they would have intersected I would have, for example, if the target was here 

then this horizontal line would have intersected here directly. So, I would have got a 

path, but it has not intersected so, far. So, these 4 lines they are considered as trail 

lines of level 0, this 0, and the suffix indicates the level. So, what is mentioned here, if 

they do not intersect in this example it is so, that identified as trail lines of level 0 

which we store temporarily for further processing we have to manipulate this 4 

straight lines further. 
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So, how do manipulate? That is your step i of the iteration where i greater than 0. 

Because step 0 you have already done. See the idea is simple you try to understand. 

Pick up trail lines of level i minus 1, one at a time. So, you are now at step 1, i equal 

to 1. So, you pick up trail lines of level 0 there are 4 search one at a time. So, along 

the trail line all it is grid points are traced. Starting from the grid points new trail lines 

of this new level i are generated that are perpendicular to the trail line of level i minus 

1. Let us try to work out this. So, what I am saying 2 things. Along the trail line the 

grid points are traced and starting from this grid points new trail lines which are 

perpendicular to the original trail line they are generated. Let see. 

So, let us look at one of the time. Let us say this one. This horizontal, let say along the 

grid I have one grid point let say here and one grid point here. So, the grid points are 

imaginary grid points are not actually stored in your so, you know that what is the 

minimum separation. So, you just imagine this grid point. Let say we have there are 4. 

Similarly, in this direction for this line there may be one grid point here. And there 

can be some grid points here right. Now along this grid points you through next level 

trail lengths which are perpendicular to this let me use a different color. Let say I use 

a trail length like this, I call it S 1. So, across all the grid points I am doing this I am 

drawing so, many trail lines. Some of them will be hitting the obstacles some of them 

will be crossing. 



Like this will go, similarly in the in this direction they the other direction will be 

doing the same thing. These all will be labeled as S 1 - S 1, S 1, S 1, S 1 and S 1. 

Similarly, in this direction there will be trail lines like this so on. They will all be 

labeled again as S 1. These are all S 1. Right now you see here you need not have to 

the same thing you would have done here. Like here also you would have identified 

the grid points, and you have drawn the horizontal line vertical things, but what you 

see that you have already got an intersection of a red and green lines here. One 

coming from T and the other coming from S, this T 0 and S 1 are intersecting here. 

Now as you got a path intersection like this, you can trace back a path. Like up to here 

then you go here up to this grid point and you have got a path. 

So, you see the idea is very simple. You do in this way and you will reach stage where 

some line starting with from T and some line starting with S will intersect. And you 

keep carrying out this check at every step. And once the intersect you have been being 

means you have obtained a path you can trace back and find a path. So, this is the 

essential idea behind the Mikami and Tabuchi algorithm. And this algorithm actually 

guarantees to find a path if it exists right. Now this example you have shown. 
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Now, you see this is an improvement over the Mikami Tabuchi algorithm. In the 

Mikami Tabuchi algorithm along the lines I am looking at every grid points and I am 

running, so many perpendicular lines along each of the grid points. So, what 



Hightower’s of algorithm says is that you will need not have to run so many 

perpendicular lines. Number of lines can be drastically reduced. 

So, very quickly let see this steps. So, instead of generating all line segments that have 

perpendicular to a trail line, you consider only those lines that can be extended 

beyond the obstacle which has blocked the line, blocked the preceding line. So, you 

try to find out something called escape point and escape line and I will explain this 

with example. So, you try to find out escape point and escape line and you draw the 

perpendicular lines only at the escape points. This steps of the algorithm are similar. 

You pass a horizontal and vertical line through source and target, if first level probes 

if they meet path is found. Otherwise pass a perpendicular line to the previous probe 

line, but not at all grid points only at the escape points. 
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Let see, the concept with the same example let see. So, we consider this example here, 

again the same example. So, the first step is same as in Mikami and Tabuchi 

algorithm we run, horizontal and vertical line both through S and T. Well I am 

showing it in the color. So, the labels will be S 0 this will be S 0 this will be T 0 this 

will be T 0. Now let us try to understand the escape points. See escape points means 

see this line, this line is hitting this obstacle, just a grid point just before the obstacle 

that is identified as an escape point. So, now, here it is setting similarly this line is 

hitting the obstacle. So, your line just before that you can take this as an escape point. 

Similar is the case the vertical line does not hit any obstacle. 

So, you can take grid point just here. So, on these grid points you run perpendicular 

lines. You run perpendicular line like this call this S 1. Call a perpendicular line draw 

a perpendicular line here call this S 1. Draw another perpendicular line here call this 

also S 1. Now with respect to these perpendicular lines you identify escape point like 

this. You see this line S 1 this is running very close to the obstacle parallel, but it is 

not hitting it anywhere else, well it is hitting it here. So, means will be getting one 

escape point here and another thing you also check where it is just crossing the 

boundary of the obstacle it is here. So, just beyond that this will be another escape 

point defined. Similarly, for this line S 1. So, it is hitting here of course, and it is here 

it is just crossing the boundary. 



So, there will be one escape point here. Similarly, for this green line S 1. So, there 

will be one escape point defined here where it is just crossing this another escape 

point defined here just crossing this. So, on this escape points you defined another set 

of perpendicular lines. So, for this the perpendicular line will be like this. This will be 

your S 2. On this your perpendicular line will be this. This will also be S 2. So, on this 

the perpendicular line will be like this. So, this process will continue this will be T 2 

and here it will like this. So, now, you have seen that that one line from S and one line 

from T has intersected now they in fact, many search. So, does one search intersection 

is here one search intersection is here you can take any one of them. 

For example, if you take this one this intersection let say, then your path will be like 

this. Then your path will be via this, so, you can see. So, in higher algorithm you can 

generate some paths which run close to the boundaries of the obstacles, which will not 

unnecessarily congest the remaining path it because if you run a wire like this it can 

unnecessary stop the other wires from coming in this area. So, it is trying to trace the 

paths using some lines which are running parallel and close to the boundaries of the 

obstacles. So, this is the basic idea behind Hightower’s algorithm you can see, there is 

a number of lines you are considering is much less then Mikami Tabuchi algorithm. 

But the only computation you have to do is that you have to identify the escape 

points. So, this is also not very not computationally involved. You have the data 

structure to store the rectangular obstacles and just using simple coordinate geometry 

you can identify this escape points, right. 
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So, lastly we look at very briefly some something called Steiner trees which we 

mentioned earlier. Steiner tree means a set of points interconnected by horizontal and 

vertical segments is called rectangular Steiner tree. Where some bends can be there 

allowed even at points where there are terminals like here.  

Now the advantage of Steiner tree is that this is how we actually do the layout and the 

interconnection length is typically less as compare to simple point to point routing. 
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But the problem is that the general shortest Steiner tree. Steiner minimal tree problem 

detection of that is computationally complex. So, there are Steiner tree base 

algorithms we are not going to detail of this here. So, here we are trying to address the 

goal to minimize this some of the lengths of edges of the tree. Well exact versions 

exist, but they as I said it is a np hard problem. You can get the exact solution only for 

very small problem instances, but for larger problems in approximate heuristics exist. 

And also you can a weighted Steiner tree is means instead of giving equal weights to 

all the edges, you multiply the weight with the length of a segment with a weight 

parameter W. This weight indicates the congestion of that area. So, if you are running 

a net through our region which is highly congested that weight value should be higher 

you should try to avoid the congested regions. 

And some works have been done where Steiner tree with arbitrary orientation. 

Particularly diagonal connections 45-degree angle connections are also allowed. So, 

there are some grid routing algorithms which are also based on Steiner tree.  

So, with this we come to the end of this lecture. 

Thank you. 


