
VLSI Physical Design

Prof. Indranil Sengupta

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 14

Placement (Part IV)

So, in this last lecture of the week we shall be looking at some more placement

techniques instead of how they work. So, this is lecture 14.

(Refer Slide Time: 00:35)

So, we start with an interesting algorithm which is proposed by Melvin Breuer. This is a

placement technique which replaces partitioning technique, where the idea is very simple

in concept. See normally what we do, we do circuit partitioning, we create the different

modules of the blocks then we place the blocks, but here he say is that when we have a

netlist, we repeatedly do the partitioning that in such a way that at one stage each of the

partitions is small enough, so that we can directly place it in a cell. So, partitioning in

placement are going hand in hand. So, if we have a 2 dimensional area for placement,

which is typically the case for a full custom design style or a gate array design style, then

you can use this kind of a placement strategy very effectively.

So, this is a placement strategy, which uses partitioning technique. So, given circuit

netlist is repeatedly or progressively partitioned into two or more sub circuits; two sub

circuits at every stage because you are using 1 partition 1 slice in a wave (Refer Time:

02:09). So, given a circuit if you make a slice you will get 2 circuits from there. So, at

every step you are doing some kind of a you can say bi partitioning divide it up into 2,

but a several such partitioning you are doing repeatedly, you are doing a sequence of bi

partitioning until you reach a stage where each of the pieces that you create can be

directly placed.

So, some of the salient ideas is that at every level of partitioning. So, you use vertical and

horizontal slices, so that the available layout area is partitioned into horizontal and

vertical subsections alternately. So, what I mean is something like this.

(Refer Slide Time: 02:58)

Suppose I have layout area rectangular in nature. So, suppose I start with a vertical

partition like this. I divide it up in 2 pieces, then I use a horizontal partition, I divide it up

into 4 pieces, then I again use let say a vertical partition like this, so 2 more pieces are

created. Let say again a vertical partition like this, 2 more pieces I created then again an

horizontal partition like this, a horizontal partition like this, this I go on repeating.

Now, the sequence of this horizontal and vertical partitions can differ; so there are many

such partition strategy 2 of them we shall be seeing through some examples, but the idea

is this; you go on partitioning a given rectangular space using vertical and horizontal

slices repeatedly, to create the partitions at the end you will be getting these partitions,

which can be directly placed, placed on the silicon floor.

So, the basic idea is that the process is continued till let say each of the partition sub

circuit is single gate, which has a unique place on the layout area well. Here you can

relate this problem to the gate array placement, in a gate array you have an array of gates,

here also we are doing partitioning, partitioning, partitioning we arrive at gates. So, each

of these gates can be placed into one particular gate in the gate array, right.

(Refer Slide Time: 04:55)

Now, Breuer has proposed several sequences of the horizontal and vertical cuts, these are

called cut oriented sequences. Now when these cuts are proposed you see there is an

important point, see in this diagram say I have shown these lines, well as if I am cutting

the circuit in the middle, but it is not exactly like that. So, what is done is like this I am

showing I am illustrating for 1 step, let say let us take a very small example I have some

gates, let us take a very small example.

Let say I have a circuit netlist like this, now in this diagram I have said that I start with a

vertical cut in the middle, but actually this middle is just for illustrations purposes, it is

not exactly the middle I am cutting, what I am doing you see I have a 4 5 6 7 9 10; 10

gates. So, let say I am using Kernighan Lin bipartitioning algorithm, to get a good

partition of these gates. So, I do not know which is the best partition, let say this is a

good partition let say. So, I have 5 gates on this side, I have 5 gates on other side.

So, my objective is to minimize the size or the cuts the cutsize number of lines which are

cutting. Now in this case it is 1 2 3 4 5 lines are cutting, so cutsize is 5. So, here

whenever I am showing these lines as if they are dividing it up into 2, it is not blind

division, but you look at the cut size minimization sub problem, you cut it in such a way

that the cutsize is minimized right. So, each of these cut oriented sequences at every step,

you are actually trying to minimize the cutsize. Now 2 alternate cut sequences are means

it shall be illustrated here. In fact, Breuer illustrated and stated a few more, but we are

just illustrating 2 of them with example. So, that you know exactly what is being done.

(Refer Slide Time: 07:58)

So, this is the example block level netlist we are considering for illustrative purposes

well, these each of these circuits can indicate a gate right, and we are assuming that the

thick edges; there are 4 thick edges, 5 thick edges have a weight of 1, they are critical in

some sense and the thin edges have a weight of half 0.5. So, when you make a cut you

will have to estimate the cut size accordingly, right.

(Refer Slide Time: 08:33)

So, in the first method which is called Quadrature Mincut placement; the idea is to divide

the layout into 4 parts with 2 cutlines: 1 vertical, 1 horizontal both passing through the

center, just like I have illustrated earlier given a layout you cut vertically, cut

horizontally you get 4 pieces. Now when you make a cut as I have said, you do the cut

considering the cut size minimization problem, you can use the Kernighan Lin algorithm

for the purpose. Now this division procedure is recursively applied to every quarter, see

means after these 2 lines you have divided the whole layout into 4 pieces, now each of

these 4 pieces you again subject to vertical and horizontal cuts. So, you go on repeating

till each of the small pieces are of the desired size. So, let us see with an example.

(Refer Slide Time: 09:38)

So, this was the example block level netlist. So, we start with this. So, I am showing the

solutions only a. So, here these dotted line means I am starting with a vertical cut and in

fact, this is the best vertical cut. If you apply Kernighan Lin algorithm this will be the

best vertical cut, which is dividing the netlist into 2 parts. So, these 2 parts is shown by

these 2 pink rectangles. So, I have already divided 2 netlist into 2 partitions.

Now, each of these partitions you are now subjecting to a horizontal cut, again you apply

Kernighan Lin algorithm. So, this will be the best cut, this will be the best cut. So, after

doing this cut you divide you have already divided the netlist into 4 parts shown by the

pink rectangles. So, again you start with a vertical cut on the left side. So, these 2

rectangular blocks will be divided into 2 and 2. So, let say the cuts are like this. So, the

partitions created will be like this, like this m i n e a. Now apply a vertical cut in the right

hand side, so these 2 blocks will now get divided similarly; so they will become like this,

like this. Similarly you apply a horizontal cut on the top to divide these 4 rectangles and

a horizontal cut on the bottom to divide these 4 rectangles. So, finally, you arrive at 16

rectangles where each rectangle contains only 1 gate or 1 node. So, this is my desired

final state.

So, you see that initially my graph was haphazard, but after completing it, I have got n

here, I have got b here, I have got c here, I have got g here; you see initially b was here

initially c was here, but they have got into a position which indicates minimization of the

cut at every step, because c which is here this has moved here at this step, this has moved

here in this step and it remained there. So, it is not that I am blindly cutting the gates are

also moving around during the process and this is the final placement I will get right. So,

this is the first method.

(Refer Slide Time: 12:24)

Now, the second method is called recursive Bipartitioning Mincut placement; again you

see here the method is similar, but the sequence of cut lines are a little different as I will

show with an example, this again is a recursive division using vertical horizontal cut

lines, but I shall be explaining with the help of the example that how.

(Refer Slide Time: 12:46)

So, the same example I take. So, I start with a vertical cut dividing up into 2 rectangles,

but instead of a horizontal cut across the layout, I am cutting only one of the hubs. So, I

am cutting this, I get this then I am cutting the right half and then I am getting this, then I

am cutting vertically one of the 4 this one, then I cut this.

(Refer Slide Time: 13:23)

Then I cut this right, then I cut this and finally, well here I am showing in 1 diagram I cut

this, I cut this, there are 8 cuts I am showing here together. So, finally, again I get a

partition.

Now, one thing you see you go back to the previous design, you see the final this is your

final partition. You see this partition does not look to be a very good partition, because

you see there are several wires which are running pretty long N to O, O to P there are

then J to K, there are many wires which are pretty long. So, if you compute the wire

length if you take the Manhattan distance, then you can see very easily that this solution

is worse as compared to what I get here. You see here the connections are very localized

only other than 2 or 3 of the connections. So, all of them are between neighbors.

So, this method gives better solution as compared to the other one, but of course, this has

happened by chance you cannot say that for any metlist that I give you this method will

give you the best solution better than the other one. So, Breuer proposed 4 or 5 such

sequence of cuts, and you can apply them and see which of them is giving the better

result and select that better one this is the basic idea.

(Refer Slide Time: 15:05)

Fine now there is an associated problem with any partitioning based placement

algorithm, and this can be solved by using a process called terminal propagation. So, this

session illustrated with a simple example, the idea is like this. Direct use of partitioning

algorithm can increase net length as the first method showed us, this can also increase

congestions in channels in some areas a lot of lines will be there, this also was seen in the

first method.

So, to avoid this, a method called terminal propagation is used which I shall be

illustrating with an example, where the concept of a dummy terminal is used which is

propagated towards the partitioning boundary. So, I will be explaining with example then

you will understand what is it clear.

(Refer Slide Time: 16:08)

Let us take an example like this, these are very simple example; 2 blocks this A and B

they are connected. So, if I use a simple partitioning based (Refer Time: 16:21) deistic

like in the first method. So, I go on partitioning other blocks I am not showing, I am only

showing A and B. So, as you go on partitioning it may so happen that A will land up here

and B will land up there. So, connecting A and B will involve a long inter connection

line it means a long delay.

But terminal propagation concept is something like this, that when you partition a layout

using a horizontal thing you see this, this AB was connected, you are doing a partition.

So, when you do a partition you see that this one wire or one net was cutting. So, what

you do? You introduce a dummy terminal at the partitioning junction. So, when you take

the 2 partitions out, this dummy junction there will be 2 copies of it, but one thing you

remember, but these 2 dummy junctions actually represent the same net. So, when you

move or cut the other blocks and compute the cost. So, if you move these dummy

junctions too far away, that cost is also taken into account.

So, you are not allowed to move B or A too far apart like here it shows. These 2 dummy

terminals will always remain closer to each other, which will also make A and B closer

to each other. So, this is just a very simple illustration I have given, but actually in a

practical case the terminal propagation process is very complex, because the net can be

pretty complicated, large number of blocks, large number of inters connection lines, so

there will be large number of dummy terminals. So, again there are lot of heuristics that

are used here.

(Refer Slide Time: 18:25)

So, here we look at another constructive placement algorithm, which is very simple.

Now we had seen earlier in our last lecture that the force directed placement algorithm

can also be used in a constructive sense where you can place one block at a time, find its

0 force location and place it there that way you can make the clusters or the partitions

grow.

So, you can have a much simpler approach here, this is called the cluster growth

algorithm, you use some kind of a bottom up approach. So, what you do? Suppose I have

a partially completed layout at any stage, suppose there are already a percentage of the

blocks already placed, the other blocks you have to place. What you do is that you place

one of the block initially, you call it the seed the other blocks are selected one by one and

placed closer to the blocks depending on the connectivity, that how they are connected to

the other blocks that creates the partitions.

(Refer Slide Time: 19:55)

Like you see I am giving an example let say I have a netlist like this, there are 6 nodes,

let say the connection weights are like this. Let us also give some names to these vertices

A B C D E and F. Now let us suppose I have a partition which I am creating, a cluster

which I am creating for I have already placed A and B. So, similar method we have

discussed earlier also. So, here I have already placed the images most strongly

connected.

So, what I am saying is that among the remaining one I place them one at a time,

possibly depending on the connectivity. B is most strongly connected, so maybe in the

next step I shall be placing B 10. Next step maybe I shall be placing C because it is

strongly connected to the rest 8 and 6, I am sure here there is another link I missed it let

say this is 3 say this is 3.

So, now if my partition size constraint is 4 let say stop here. So, A B C D these 4 already

have been put in one partition. Now I repeat it for the other, there can be other vertices

you repeat and you try constructing the 7 partition. So, each partition can be having a

limit to the maximum number of vertices that you can place you do it, you then move on

to the next partition. So, as if this is like a cluster you are starting with an initial point

you are growing the cluster up to some maximum allowable size.

So, after you have done with this, you move to the next cluster in this way you create the

partitions at the placement of the blocks.

(Refer Slide Time: 22:23)

So, layout produced using this kind of cluster go algorithms are not typically not good,

because it does not directly take into account the inter connection details exactly how

they are inter connected and what is the connection length and so on, just the number of

connections are taken into account.

But this method has some utility like, it can be useful for generating initial placement;

which can be used in iterative improvement algorithms like simulated aniline, that for

simulated aniline we start with an initial placement, now we can use this cluster growth

algorithm which is pretty fast to create that initial placement. So, instead of creating the

initial placement absolutely randomly, we use some intelligence to create a reasonably

good placement then we give it to the simulated aniline tone. So, it can improve upon

that. So, this is the idea.

(Refer Slide Time: 23:34)

So, this is the pseudo code for the cluster growth algorithm. So, B denotes the set of

blocks that are to be placed, you select a block S you call it as seed from B, there can be

some heuristic you select the block which is maximally connected that can be your seed

you place a single layout remove S from B. So, while B is not empty; repeat select a

block X from B, place X in the layout and remove X from B well. This is as if you are

completing the entire thing, but there can be another restriction as I have said which is

not shown here. So, each of these clusters can have a maximum size; so once that

maximum size is reached, you can start and you can start the selective seed for the next

cluster. So, in this way several clusters can be formed right C 1, C 2, C 3.

(Refer Slide Time: 24:40)

Now, lastly let us make some brief comments on performance driven placement, you see

we shall again come to this performance driven issues later. So, when we talk about the

timing analysis and other related issues, now the issue here is that delay at the chip level

is quite important, and it plays an important role to identify the critical paths, which in

turn can determine the clock frequency, which in turn can determine the overall

performance of the chips. And this delay often is due to inter connections; bad wiring or

bad placement can lead to large delay at the chip level.

Now, as the blocks becomes smaller and smaller; blocks in the transistor you can say the

transistor is becoming smaller, the chips are also becoming smaller. So, now,

interconnection delay has become a major issue because now the gate delays and the

interconnection delays are almost becoming comparable. So, earlier the gate delays were

much larger. So, you could afford to ignore the interconnection delay, but you cannot

right.

So, for high performance circuits in chips, the placement algorithms will allow inter

connection of the nets where some timing constraints maybe there, I can say that you

route in such a way that your maximum delay should not exceed some delta value that

can be specified by the user.

(Refer Slide Time: 26:29)

So, the algorithms broadly can be classified into 2 classes: 1 works on a net by net basis.

So, recall what is the net? A net is a connection of pins, which have to be connected;

they belong to the same means equi potential net in that sense. So, in the net based

approach here we try to route the nets to meet the timing constraints individually on a net

by net basis, we do not consider the paths.

(Refer Slide Time: 27:11)

Like what we mean is that let say I can have a scenario, where let us consider a small

circuit at the level of the gates let us take this. So, here if you look at this, this set of

wires is 1 2 3 4 they form a net because this pin here, this pin here, this pin here and this

pin here they are equipotential. So, we consider this net individually, we try to reduce the

delay of this net the maximum delay from the output of this NAND gate to the input of

these NAND gates, we try to reduce this delay. But we do not consider the path like from

my input to my final output that is the total delay, I am not considering it totally I am

looking on it net by net basis. Similarly if here I have this going here again; so I will be

having another net out here, there will be another net here. So, I will be trying to

minimize the delay of this, net like that on a net by net basis we shall precede.

So, the timing requirement for each net has to be decided, and usually some kind of a

timing analysis tool is available which generates bounds on the net lengths which must

be satisfied during placement like for example, let say I want that my circuit needs to

work at some particular clock frequency. So, you can make an analysis and you can

predict that well to make my circuit work at this particular clock, my maximum net

length can never exceed this; if it exceeds this then this requirement may be difficult to

meet. So, this kind of a constraint can be there.

The other approach maybe you consider paths from input to the output critical paths.

You look at the total delays along the paths and see whether the critical paths are

violating some clock timing constraints or not, and you try to place the blocks in such a

manner that the path lengths particularly the critical paths they do not violate the timing

constraint, not only that some of the paths which might not be critical initially, but after

you have placed them maybe some other path has now become critical. You should make

sure that such criticality of the paths their increasing of delay, should not adversely affect

the timing constraint, they should be net at all times.

Now, we shall be looking at these things later, when we discuss this static timing

analysis and maybe and such related issues. So, with this we have looked at the various

placement algorithms now in this week we have looked at the initial problems of

physical design the partitioning, floor planning and placement.

So, with this we come to the end of this lecture. So, in the next lecture we shall be

starting our discussions on routing.

Thank you.

