
Embedded Systems Design

Prof. N. Vidya

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 09

Tutorial – I

Hello everyone. I am Vidya, I will be one of the TAS for this course. And I will be

taking 5 to 6 tutorial hour on HDLs and FPGAs. So, today’s tutorial will be on HDL

introduction will know what an HDL is, how we make an HDL design, why are they

used what are their advantages and all.

(Refer Slide Time: 00:49)

So, let us start. Before we define what an HDL is I would like to; let us discuss how we

build the digital system.

So, these are the overall steps that are involved in building a digital system. First of all

we have a problem statement. So for example, we want to switch on a light if someone

ring the doorbell; that is one of the problem statement. And the other problems would be

like we have to do some computation of two numbers and get output, like we do some

operation on two numbers and we get an output. So, that is one problem statement. So,

like this we have different kinds of problems statements. So, we convert the problem

statement into lab or project specification. So, problem statements convert into to a

project specification. So, once we document the problem into a specification. We move

on to describe the behavior of the system. So, we go on to the behavioral description of

the system.

So, in the behavioral description we have we define the operations functions processes

etcetera that is required to convert the inputs of the specification into the outputs. So,

that is what is done in behavioral specification. We generally design algorithms, we

design, we put the functional operations etcetera in flowchart and RTL description will

come to that later what is an RTL and all. So, the problem statement is converted into a

behavioral description, and then once we have the algorithm the flowchart the state

descriptions and all we convert it into a Boolean logic and state.

This is a by this what I mean is the behavioral specification is converted into set of

equation or a circuit schematic so that we can put it on to the real physical device an

electronic device. So, we have in Boolean logic and state we have it logic creation and

we have a circuit schematic. And once we get we have the logic creation and the

schematic we convert it to a particular hardware; for example, and, or, etcetera. So, the

equations will be converted into a physical entity.

So, this is a overall view of how digital system is built. In earlier days we used to have

the designers used to build hardware by using paper and pen. So, they had to write the

equations they had to solve Karnaugh map K map they had to solve everything and I

have to like manually do everything as a complexity of the design increased people

wanted to more automatic way of doing things.

(Refer Slide Time: 03:57)

So next when the complex complexity increases we moved on to replacing the Boolean

logic and state as a HDL description. So, this is where HDL comes into picture actually.

So, HDL description is basically like helping us to overcome the complexity after

designs that we are facing nowadays. So, main motivation behind HDL is like how I

have told a specification. We have a problem statement we convert it into a project

specification and their specification has some goals.

So, a specification maps into some goals and then a methodology is in which we design

a system. So, there are two things: in goals we define how the system should be; what is

the cause it is required to build a system, what are the power requirements, what are the

latencies functionalities etcetera.

(Refer Slide Time: 04:49)

That uniquely define a system and then we can go back to that goals and check if that

that are met or not. In the end and second thing is the design methodology.

So, there are two types of design methodology: top down design and bottom up design

methodology. So, in a digital system for example, if we consider a very big system, if

you take a Smartphone for example; we have lot of functionality that is integrated into

it. So, in a top down approach we break it down into smaller modules and interfaces and

then we approach each modules and interfaces individually, so that is the top down

approach. And in the bottom up approach what we do is we first do the smaller modules

first and then integrate it up to the higher level.

So, generally we follow top down approach because we usually start with the bigger

problem and then break it down into smaller problems. For example, that I have

mentioned in the slide that we have ISA; that is instruction set architecture of a

processor. So, if we have a well defined ISA it will be, therefore for a longer time that

we can use it for a longer time without actually facing any problem with the definition

of the ISA. So, that is the example of a very good specification.

With this specification actually what it helps us to do is to model a functionality. So, we

said that it is a behavioral model. And this behavioral model is used as an executable

functional specification. So, we have problem statement, we have a project specification

and specification is converted into a model using which serves as an executable

functional specification. So, what hardware description language or HDLs mean is that

we do not have to know exactly what the hardware is; we want to have a tool chain or

something through which we can design the hardware without actually knowing what

exactly the hardware is.

So, we want to know what the hardware functions, like we want to know what the

mobile does, we want to make calls, you have to receive calls, if you want to send

messages, but we do not want to know what exactly how exactly that is done. So, HDL

as a way to help us do that, and map of functionality to hardware. So, if I will come to it

latte word synthesis it. So, basically we synthesize an implementation of a behavioral

model that is what hardware description language does.

And there are like in the current industry there are three HDLs that are being defined

that are being used actually; so first is very Verilog, second is VHDL, and third is

system Verilog. So, in our discussion we will mostly discuss Verilog and VHDL and in

the later tutorials I will take some of the Verilog basics and some advanced concepts of

Verilog. So, to Verilog we will try to learn how to write a Verilog code word; basically

to build a digital system.

(Refer Slide Time: 08:17)

Since now we know what an HDL is we will look into what are the advantages that is

HDL gave us to build a digital system. First are levels of abstraction. So, we abstracted

the levels, like we do not have to know exactly what the hardware has to do. So, we have

abstracted out the exact implementation from the behavior. So, we just have to know

what the hardware does, so that is first that is the most important advantage of HDL,

because nowadays we have so much complex systems that not everything can be like

decided at the first design phase; so this helps a lot in that.

And second thing is functional simulation: functional simulation is basically we are

testing the functionality of the design, whether whatever we are thinking what the design

does it is it is actually being; the design does that is for functional simulation does it

verifies whether the functionality of the system is right. So, we can do functional

simulation using a HDL very early, like before the hardware actually comes before it is

build we can do that simulation of that design. So, that is how it helps in functional

simulation.

Third thing is the HDL code directly gets converted into gate using some tools that I will

discuss later. So, we do not have to like draw the schematic and then convert it into

hardware gates and then like it takes time and it we can fix any errors easily if you are

using HDLs. If you are doing it by hand and my paper it is very difficult. And there

something called technology specific net list. This also I will come to you later; basically

an HDL code gets converted into gates using a process called synthesis and generally we

have standard tools to do that.

And four things is we can decide like if for example, we have a design it can be

implemented in different ways. So, using HDL we can do that implementation in

different ways in a very small time. So we can test, we can design the implementation we

can test the implementation. So, that is another advantage of HDL.

Last thing is design reuse that if you have heard I do not know we have IP blocks. So,

intellectual property blocks, which have being used reused again and again for different

purposes like if a company has designed an IP it can be used in some other companies if

that the other source company allows it to be used. So, design is reversible and it is

portable across different technologies if we are using HDL. So, these are the main

advantages of HDL.

(Refer Slide Time: 11:15)

Next will discuss the two main HDL set there are: there is currently VHDL and Verilog.

So, VHDL was initially developed for creating ASIC synthesis as it is Application

Specific Integrated Circuits. So, for synthesis of ASIC systems VHDL was used and it

was developed by us defense of department. And if you see Verilog, Verilog was used for

gate level simulation; simulation of the gates basically. And it was developed by a

company called gateway design automation and that was acquired by tardiness. And

VHDL is very verbose kind of language and Verilog is C like language.

So, it is very easy to understand Verilog and it is comparatively harder to understand

VHDL. VHDL has some package management structure and it is support package

management for larger design, but Verilog does not have such extensions for larger

design. And if you see the way the code is written in VHDL and Verilog: in VHDL we

have entities and the will have architectures inside them and act architectures have

configuration. So, this is how a basic structure of a VHDL code looks like. And in

Verilog we have only module. So, from this only you can see how different it is like

VHDL has it is verbose from this only can understand how text it is very like richly

typed language.

So, there is something call modeling, there are three different types of modeling:

behavioral, structure and logic. Both VHDL and Verilog support those. We will study in

detail what these are with respect to Verilog. And there is something called such

synthesizable subsets which allow us to port the Verilog description into hardware. So,

Verilog and VHDL can also be used for simulation purposes which does not map into

hardware. So, there are specific synthesizable subsets that can be map to hardware; like

in the last thing is what do I told like VHDL is hard to learn and use and Verilog is easy

to learn because it is very similar to C.

So, these are the main difference between VHDL and Verilog. So, in our tutorial

sessions we will be mainly dealing with Verilog.

(Refer Slide Time: 14:03)

I have been talking about synthesis a lot in the previous slides. So, we will see what is

synthesis is. We talked about how is HDL serves as an executable functional

specification which define the digital system using a design methodology, where that

the designs are divided into modules and interfaces. So, the executable functional

specification document the behavior of modules and interfaces and it can be tested and

refined. So, that is what executable functional specification is.

So, HDL is a first step to automate all the process of digital design. So, this executable

functional specification we can take it as HDL description which is given to a logic

synthesis tool and we get a gate level netlist. So, what I mean by logic synthesis is we

have an HDL description of a system to map it on to hardware on like and gate or gate

or counters or some higher level ALUs example like that. So, to get a netlist we feed the

HDL description and feed target libraries into the tool which has the basic primitive

logic gates and digital construct basically and which is a technology specific.

So, we give the HDL description and we give the target library to the tool and the tool

synthesizers a netlist. Netlist is generally file in the format EDIF which is electronic

data interchange format. So, that is a technology independent like any vendor can take a

netlist and they can use it to do further processing of the system. I will come to this

later. So, what we have understood is HDL description maps to a gate level netlist using

target library. And this is iterated over and over again for a higher speed and lesser area

perspective.

So, we want the system to work very fast, and we wanted to use smallest area possible.

So, we tried to like optimize the design for the same. So now this whole process is

called functional design and it is a part of front end design. And once we get the netlist

we have to map that on to a physical system. The physical system can be a FPGA or an

ASIC. So, the gate level netlist it is placed and routed to an FPGA to a particular device.

So, how we do that is for example, if you are making a big building we have fluid pan

architecturally using like that, once we have the small blocks that are that have to be

made for the judicial system we make a floor plan of the whole system. And we place

those we place particular modules and particular places in on the hardware with which

is the basically our space where we will put the design. So, we place the design and then

we connect different modules to get the whole system. So, this same thing we again

optimizer thing we place it here and then and we check which is the optimize path

which will give us the high speed, less area, less power, all those things are done.

So, now we have a design on the FPGA, sorry on the FPGA. So, this process is called

physical design or back end design. So, this is how we will convert HDL description

into FPGA or ASIC; this is how we build. So, in this tutorial we will mostly considered

FPGA and I will be teaching how to design a system or how to develop a small basic

embedded system on FPGA.

(Refer Slide Time: 18:30)

So, the HDL implementation cycle is in over all like this. So, we talked about product

specification, we talked about behavioral description etcetera so that is what is called

design entry which we specify using the Verilog code. And then we check the

functionality of the design by doing functional simulation. So, we check if the

computation is being performed properly or not. So, that is the functional simulation

and from Verilog we do synthesis of the Verilog code and we get a great level netlist.

So, in that level also after the synthesis we do gate level simulation, we check if after

the logic has been ported into a netlist form whether still the functionality is same or

not. So, we do gate level simulation.

Once we are done with the synthesis and the gate level simulation we implement the

design map it place it and route it on the hardware. So, this is a basic HDL design flow,

and hope you understood what where Verilog comes into picture and how we will use

Verilog to build a digital system or an embedded system as a. So, that is all for today

and you can have the reference of slides if you want to know more about it, you can

refer to this links and share the PPTs.

Thank you.

