
Embedded Systems Design 

Prof. Anupam Basu 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture - 05 

Optimization Issues 

 

Now I see, that is not been seen there; that was off. 

So, in the last class, we have seen how a single purpose processor can be designed. And a 

single purpose processor is also known as an ASIC; application specific IC. Now the 

example that we have given in the last class was for computing the GCD of 2 numbers; 2 

integers. Now that is an example of data dominated computation. 

(Refer Slide Time: 01:31) 

 

On the other hand if I give an example of another task that suppose I am to design a 

system that will accept timer signals, I mean some events, I would say some events 

which are coming at specific time and whenever say this event is coming every; let me 

put another one here, this event is coming every 10 millisecond, every 10 millisecond, 

this event is coming and whenever this event comes, this system should read a 

temperature; temperature which comes at as 8 bits that is being read through some port, 



we will need some port of course, there is a design issue and through 2 thresholds will be 

fed, threshold 1; threshold 1 and threshold 2. If temperature is greater than threshold 1 

then start coolant or start fan. So, some fan should be actuated for cooling it down. If 

temperature is less than threshold 2 then start heater, alright. 

Now, this is a requirement. Just look at this and tell me if there is any gap, let me also 

check whether there is any gap because that is very important whenever you are giving 

the specification that is very important, whether there is any miscommunication or there 

is some gaps. Here events are coming every 10 millisecond. So, at every 10 millisecond, 

I have to sense the temperature alright that I have not written over here on even sense 

temperature let me write down, on event read temperature alright and then is being 

compared with this. 

Now, this one you will have to design. So, I am, right now today I am leaving it is an 

assignment we will work it out at a later date, but for everybody, I would want that you 

try your hand in designing this very simple system. You will have to design its control 

path and data path. In continuation of what we are discussing in the last class, you will 

discover when you design it that here the data path will be much simpler than the one 

that was with GCD, where as the control path will not be very same, but not very 

complicated here also it is a very simple problem, but I want that you try it out. 

This is one of the assignments and will come back to this maybe after couple of weeks to 

redesign this. 



(Refer Slide Time: 06:40) 

 

Now, today we will discuss about some optimization issues, I will initially go back to the 

earlier design that we had done we had designed this data path and control path for the 

GCD, we had 2 registers to hold the values, does the control lines, the 2 multiplexers and 

4 operators and ultimately we got the GCD and there were 10 states, now when we carry 

out the optimization of these; that means, they are there is a scope of managing or 

reducing some redundancies that are already there. 



(Refer Slide Time: 07:28) 

 

Now, the redundancies can be there, we can do the optimization in the original program 

itself, we can opt try to optimize the FSMD we can optimize the data path or we can also 

optimize the controller the complexity of the controller each of them, we can do. 

(Refer Slide Time: 07:55) 

 



Now, optimizing the original program just if you think of a little bit looking at this 

program that is being given for computation of GCD can you see any scope of 

computing less or making it more efficient, if you work out this part you will see that I 

am repeatedly comparing and subtracting I am doing that repeatedly where as the typical 

GCD that. 

(Refer Slide Time: 08:57) 

 

We compute say 225 and maybe 25, I am trying to divide this 9 times. So, then this 

becomes straight way coming as the GCD. So, I am not save again, let us say 15 and 

200, if I do, what do I do? I repeatedly divide. So, and I take the reminder and then 

divide and go on dividing till my remainder becomes 0. 

I can continuously check for the remainder to be 0, if not I will take the remainder and 

repeat the division with that will save me from repeated subtraction and repeated 

comparison of p and q. 



(Refer Slide Time: 10:19) 

 

(Refer Slide Time: 10:26) 

 

If I try to do that you see this part compared to, what I was drawing on this green paper 

and the one that has been given in the slides of Vahid and Givargis, my p and q are his x 

and y. So, please bear with me to make that replacement. So, here you see in the original 

1, this was the loop while x is not equal to y, if x is less than y, I subtract, else I do the 

other subtraction and this thing I do. 



Now if I replace it, here while y, y is the remainder or the while y is not equal to 0 say 

like this, what is the numbers that I have just now taken 15 and 200. So, 15 is the y, 

while y is not equal to 0, I am taking the modulus r is the modulus and modulus means 

the remainder. So, say 200 divided by modulus integer division 15. So, that is leaving me 

with the remainder 3 then I am just looking doing x y is now being assigned to x and r. 

So, they have been changed y and r, there are being just swapped here and I am repeating 

this. 

Now look at compare this, how many operations I had to do here? there was a 

comparison operation there was a checking operation that checking operation is no 

nevertheless, there are 2 subtractions and here there are assignments 2 subtractions and 2 

assignments, here I can just do simple 2 assignments and one operation of modulus, 

thereby the entire program has been made more efficient that will save in the number of 

clock cycles also the number of that I need here, I need to say if I take 42 and 8, if you 

work it out, it will take 9 iterations to complete the loop 42 divided by 8 that is being 

done is not being done by division is being subtracted 42 minus 8, 34 and in that way it 

goes on. So, it takes 9 iterations where as if I do it in this algorithm with these operations 

then I can get it done within 3 iterations. So, this is a very nice example of showing, how 

I can play with the algorithm itself to go for more computationally efficient algorithm. 

(Refer Slide Time: 13:33) 

 



(Refer Slide Time: 13:47) 

 

The next stage is we can optimize the FSMD itself, there are because you see when I had 

drawn this FSMD; this is same as we will see just drawn in a different way, I did not 

bother about minimizing the states whether anything useful is being done in between in 

the in the states or in between the states I did not bother about that I simply translate it 

this algorithm into this diagram step by step now it is time that I can have a people look 

at this and see if I can reduce this there is a second step. 



(Refer Slide Time: 14:35) 

 

We can say here now this state is actually not required right now I can simply start mark 

these 1 and 2 or eliminate this one and start with 2 and in 2 and 2 j, we have here what is 

being done 2 is on not go I am going here and again coming back. So, that could be very 

well done with self loop. So, 2 and 2 j can be merged to give 1 state 2. So, on go I come 

here and on not go I remain in the loop next 3 and 4 these were 2 distinct steps in my 

algorithm and accordingly I had kept them as computational states as computational 

states, now I can straight away merge this 2, I can merge this 2 and in 1 state I can do 2 

computations why because these 2 computations are completely independent there is no 

way dependent on each other I am taking from one source and loading in one register 

taking from another source and loading in another register. So, I can merge these 2 and I 

get 1 state. 

Next 5 and 6, similarly the assign here the assignments operator independent, now this 

transition from 6, I can very well take it from 5, there is no need of x not equal to y, I 

come to this and then take a transition, I can also merge these 2 and so my scenario 

becomes this, but you see here 7 and 8 cannot be merged, there is no question of 

merging, they are these are 2 alternate paths I can take any one of them, alright I can take 

any one of them depending on the 2 different conditions. So, these 2 are kept as it is this 

is for x less than y and this is for x not less that y and then I look. 



Now, this these things that were there 6 j and 5 j were there, they can also be they can the 

transitions here what I was doing from 7, I am coming to 6 from 8, I was also coming to 

6 j day and accordingly I was doing the transition, but that that is how it was written in 

the algorithm, but I can straight way merge them and come to this point therefore, this 

becomes a reduced state diagram. So, how many states did I have 9 states or 10 states 

here I have got one 2 3 4 5 6 states 6 states how many flip flop should I need 3, 3, 3, 3, 

bits, how many bits do I need? 3 bits and earlier I needed 4 bits, why? Where did I need 

those bits? For encoding the states, now here since the numbers of states are less the 

number of bits required is also since there are 6 states I can do that with 3 bits. 

So, I need I will be needing 3 flip flops, thereby I am optimizing not yet coming to the 

complexity of the control path, but purely on the number of flip flops. So, that is the 

second part of optimization that we can do. 

(Refer Slide Time: 18:43) 

 

Optimizing the data path that was a little evident in the last class itself, what we did is 

one-to-one mapping that we did; you can come to any one of those diagrams. 



(Refer Slide Time: 19:09) 

 

Say for example, this diagram where I needed a p and q, I had put in 2 subtractors and 

everything and there was one to one mapping one operation with this subtractor, one 

operation with this subtractor, why I can very well reuse the subtractor because why can 

I reuse the subtractor? Both of them are not being used in the same time therefore, I can 

use the same functional unit right also I had used comparative there was one not equal to 

there was there was 2 subtractors if I had, but now if I look at this algorithm lets here. 

So, except for this which I can merge in one state this is purely loading this is no 

arithmetic operation this assignment is purely the task of loading the multi controlling 

the multiplexer at loading the registers. So, that is not an issue. 

Here none of these operations are being done concurrently. So, I can very well I could 

have used a one ALU for that now I have to see whether the cost of the ALU is more 

than having them separately a simple solution is of course, the subtracted could be reused 

or I can see if I can use the ALU also, but you see can you if you just think of think a 

little bit as soon as I use a ALU with this here I am using separate things right and 

accordingly separate control signals will come to each of them activate it and if it be an 

ALU there will be different control signals coming so that the control circuit will also be 

changed. So, the optimization criteria are multi functional units or sharing of the units. 



(Refer Slide Time: 21:24) 

 

And the other thing is the optimizing the FSM, the state encoding, we can assign a 

unique bit pattern to each state size of the state registered and combinational logic vary 

we can minimize the states multiple states into a single state that is possible. So, in these 

different ways we can carry out the optimization. 

Summarizing, what we have done in this design state encoding you have to do, but there 

are ways and means of encoding by which you can reduce the number of reduce the 

complexity. So, because here the way you assign the unique bit pattern to each state that 

is very important because accordingly you will have to use the flip flops also alright now. 

So, what we have done in this exercise is we wanted to design a GCD this is a simple 

example we started with an algorithm fine and we translated that algorithm into the 

control data flow graph or FSMD which I got here not here where is that we got an 

FSMD here right and based on that looking at that we developed the data path and then 

we first developed the data path and then we proceeded to design the control path. 



(Refer Slide Time: 23:22) 

 

Now, after we did that we went for optimization, now there are EDA tools there are tools 

electronic design automation tools which are also known as EDA tools which allow you 

to describe the behavior of a circuit in or behavior that you want to do using some 

standard languages specification in through some standard languages we learn some 

languages, but very common are VHDL, Verilog, etcetera, there are other languages will 

look at them as state chart, SDL so and so forth, we look at those. 

Now this specification is fed to a design compiler, the specification is validated and then 

you can call it a design compiler that leads to the data path and the control path and 

optimizations and that. So, for complicated circuits we will not be able to handle it 

handle all the apps or optimizations manually, but after that we after the comp the 

optimization are done then this thing is coming is brought in to the actual 

implementation followed by testing there is the more or less the flow of the tools the 

EDA tools. 



(Refer Slide Time: 25:40) 

 

Now, summarizing whatever we have discussed up to now that is for embedded system 

design we can utilize general purpose processors we can utilize ASIPs or we can design 

single purpose processors, single purpose processors. Now if we look at it from the 

flexibility side then as we move in this direction, we are gaining more and more 

flexibility, if we, but; obviously, if I just put another axis of energy cost I mean the time 

to market time to design wave which way does it increase it will increase in this side 

right now as regard speed which side should be faster this side should be usually faster 

because here we are getting everything on dedicated systems, here there is software 

components involved which are doing which are being interpreted by the processor and 

that is a relatively slow than this. 

However the energy cost or the time to market will increase if I want to make single 

purpose processor for everything. So, in between these 2 in between this range there has 

been another segment which is known as programmable devices programmable logic 

devices or PLDs as they are called. 



(Refer Slide Time: 28:14) 

 

And ultimately in embedded system market a variant of this PLDs a much more 

advanced version of them has come in the form of field programmable gate arrays right 

field programmable gate arrays in short they are known as FPGAs this FPGAs can be or 

hardware, but their interlinks can be programmed alright interconnects can be 

programmed and that can be done using some software and once that is that interconnect 

programming is pumped into the FBGA board then that particular FPGA can carry out 

any logic function of your intention. 

This is one step, what typically we do is if I have got an idea of a design we may like to 

do it on an FPGA quickly and see whether my functionality is met only then and 

sometimes that FPGA solution works fine alright it will be a little slower maybe then the 

single this thing, but is much more it is not as flexible as these, but there are certain 

advantages of this which I am coming to again alright not as flexible as the purpose 

processors, but it is much easier to program I can reprogram them if I like depending on 

the type of FPGAs. 



(Refer Slide Time: 30:41) 

 

An FPGA or FPGA is essentially a scenario like this will have an FPGA board on which 

there will be several io pins on all sides with which we can connect to the external world 

and there are a number of CLBs, this is CLB what is CLB? CLB stands for configurable 

logic block these are configurable logic blocks there will be an array of these typically 

the present day FPGAs give you around 3 hundred thousand such CLBs on the typical 

chip on a typically FPGA chip the FPGAs the best known FPGA manufacturers are 

XILINX, did I spell it correct or ACTEL and there are other also others also I should not 

say, but these are very popular. 

Now, there are number of combinational logic blocks and these are surrounded by a 

number a of interconnection wires number of huge number of interconnection wires now 

these interconnections I can very well program alright now this. So, I can just give you 

an idea of how this is what do I mean by this programmability let us go back from 

FPGAs to their earlier predecessors PLAs. 



(Refer Slide Time: 37:17) 

 

I mean this where imagine you have got an array of and gates there are some 

interconnections this and plane with the number of and gates and there is an or plane 

there is an or plane and here is the and plane. So, here at this level green level are the 

colors visible yes suppose there are number of and gates and on this side there are 

number of or gates recall that any logic function we can write as say x y or we can write 

as a combination of, or as a main terms right I can write in this way 3 input say I am 

talking about 3 input function x y and z suppose this. 

Now, this is nothing, but a combination of ands and ors therefore, it is possible for me to 

implement this functions if xyz are available here then I can connect if I can connect say 

this and gate and here I put in x and y and I connect this and connect this to this or gate I 

take y here, this is x, there is y and I take this y again here, connect this y here and I take 

z. So, here I am available either I am getting the compliments of the variables and the 

variables themselves z and z prime are both available to me. So, I can connect z prime 

here and I take this and output and put it at the input of other input of this circuit 

therefore, I am getting this function. 

Now, I can similarly do this and then again connect the output of this or gate to this or 

gate. So, I can similarly have z coming here, z is coming here, x prime coming here, I 



can take this and gate and this one can come to this or gate and this or gate can be 

connected to this therefore, from here I am getting the function f the point that I wanted 

to make here is just by making these connections I can connect the and gates and or gates 

at my will, and therefore I can implement any particular Boolean function that serves the 

basis of the idea of all programmable logic devices. 

In the next class, I will discuss about how we really actually do the interconnection. The 

basis of that and we will deal more on FPGA’s. 


