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So, in an earlier lecture, we have talked about simulation as a means of validating and 

verifying embedded systems. We have also seen what is mean by hardware-software co 

simulation where the hardware often represented in  HDLs like verilog VHDL and the 

software represented in C or C++ can be simultaneously simulated and under two 

processes as two processes and who communicate among themselves is in inter process 

communication. 

Now, simulation is of course very important and very much used in the industry. It has 

got its limitations because its coverage is doubtful I mean not doubtful the coverage is 

not 100 percent all the time and it is very expensive to get large amount of coverage it, 

takes more time. And still we will miss some errors depends on how accurate and how 

exhaustive we can make the input state vectors, based on that the coverage also varies. 
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Today we will be discussing about the other approach that is the formal verification 

approach. Now, formal verification actually comes in three different forms; one is 

equivalence checking, where we take two models that is the original spec model, I can 



 

 

say the original; let me say we take the original model, and the final model which can be 

the synthesized model or the optimized model. And try to find then equivalence between 

these two the original model can be the specification model, and then we want to see 

whether the specification model and the synthesized model are equivalent. Also it can 

sometimes to be done that are got some synthesized model and I run it when optimizer 

and I come up with optimized model. Now, I want to see whether the optimized model is 

functionally equivalent to the original model, therefore, there also will be carrying out 

the equivalence checking. 

The other method is model checking, where we are given some properties some 

properties asserted as predicates in some logical form. And we want to see whether the 

model satisfies the properties whether the model satisfies the properties. And the third 

version is the theorem proving approach where we actually proves here we try to proves 

that the implementation I or let me write implementation is equivalent to the 

specification. Now, both of this the implementation here and the specification here both 

are represented in the form of some formal logic all right. So, these are the three different 

parts. 
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Now, let us first start with equivalence checking. Now, in equivalence checking we can 

try to find out the logical logic equivalence checking. Now, here I illustrate this using 

diagram. I have got the inputs I, and I have got some outputs coming out to this system, 



 

 

this is the outputs O. And say this output is generated by this logic cone. Now, what do 

we mean by this? Here this one I can consider that this is implementing some logic and 

that logic is built of different logical elements combination of sequential blocks. So, all 

these logical elements result in this output; and maybe another set of logical elements let 

me put another output here generate this output like that.  

Now, this is the reference or the reference design, we often call it also the golden design, 

in case blocking here reference design. And here we can also have a synthesized design. 

So, this is a reference design, and which can be the specification also or it can be suppose 

the design has been achieved, now I want to optimize it; and by optimization, I have got 

another similar input and output scenario. 

So, essentially again in the same way, I have got I am coming through two; now this 

contents of this logic cone, so let me call it 1 prime. And this one another logic cone, I 

call it 2 prime. This is might be different. You see here was some logic circuits using 

which are generate this I have optimize this, and again from the same set of inputs I am 

generating the output, so another logic cone. 

Now, equivalence checking, essentially once to find out whether 1 is equivalent to 1 

prime and 2 is equivalent to 2 prime all right that is my if these two are true then there 

equivalent. Now, there are different ways in which that is found out. Now, the content of 

this, so these are logic equivalent; here we are trying to find out just the logic that given 

this input this outputs should come, given this input this outputs should come. If that 

comes then this logic block this cone is equivalent to this cone that is as if I am doing 

just on some logic circuits. 
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The other equivalence that we need to consider is the equivalence of FSM. Now, we 

know that we can define and FSM M to be a set of inputs, a set of outputs, Q is a set of 

states, there is some initial state Q 0, there is some functions F, which is a state transition 

function; and there is an output function, output function is mapping state to the output. 

So, that is a FSM. All of us know that a FSM is acts as a language acceptor, so I am not 

going into FSM in detail. 

Now, suppose I have got two FSMs 1 M 1 and M 2. Now, these two FSMs, we will have 

since I am trying to find out the equivalence between the FSMs, the inputs of these FSM 

s should be same; otherwise how do I compare the equivalence right for the same inputs 

there should behave in the same the way. So, here there outputs sets maybe different. 

Similarly, all these functions and all these things can be different, but the key thing is 

that the input should be the same. Now, from these two, I want to make product FSM M 

1 cross M 2 and what will that be, what will M 1 cross M 2 be, it will be the same input. 

The output set will be O 1 cross O 2. The state sets here it was Q 1, here it is Q 2, so it 

will be Q 1 cross Q 2; initial states Q 0 1 cross Q 0 2; similarly F 1 cross F 2 and H 1 

cross H 2 that is my product FSM. 

Now, so when we find out FSM equivalence, I am starting with two FSM say M 1 and M 

2. And output, what is my output, what do I check for equivalence. What I want to check 

is does the same M 1 and M 2, do M 1 and M 2 give the same set of output for alls all the 



 

 

inputs which are same, all I mean for all the inputs that is what do you want to see. So, if 

effectively our point is if we have got to two FSMs, and we want to see their 

equivalence; that means that given the same input both this FSM should give me the 

same output. The reason why I came to this cross product is to explain one algorithm by 

which such equivalence can be tested. 
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Now, let me show that algorithm. This algorithm was by Devdas and Newton way back 

in 1987. Suppose, I have got an FSM p from state p, this is one FSM is coming to state q 

and that is happening on input a and it is producing the output x. Please note my 

notation, here what I am writing is the output x and as it comes here it is output y, and 

this transition is looping over here on b, this is let me call it M 1. And M 2, this was 

maybe this was my desire my specification. And ultimately what I got is something like 

this r, s and then t, this is on a, and the output is x; from s the output is y and as a o here I 

make a traverse along b, and I go back on b. So, here the output is y. Are these two 

equivalent, how do you find it out? The way is that suppose I form the M 1 cross M 2 I 

will now form M 1 cross M 2. So, each nodes, inputs will be the same outputs will be O 

1 cross O 2 states will be Q 1 cross Q 2. So, here the states were p, q and here were r, s, t. 

So, my states will be p r, q s, p s, all those things right that is the Cartesian product. 

Now, so my product one will be p r, q r. You can draw with me if you like, q s these two 

q s, q t and p s and p t. Now, I also put the outputs along with that. So, the outputs are for 



 

 

this the output is x x; for p s, the output is x y; for p t, the output is x y; for q r, q and r, it 

will be y x; here it will be y y q s; and this one will be y y 2. Now, where is the 

transition, transition is from p to q, there is a transition. So, my transition set between 

this is given by my transition function F 1 plus F 2 that means, it is a a same input passes 

this transition. Agree? Now, and there passing the same output, for same input a all right; 

now let me first completed q s to q t will there be an edge, q s to q t will there be an edge, 

yes. 

Student: Yes. 

Because of b, if I have b then we have go to q to q and; for b I also go from s to t, so b b. 

And from q, t to s, I have got b, so again by b b, I come here. Now and I have got no 

transitions here now what do you find from this. 

Student: Sir, why do we do have other transition? 

Show me the other transitions, because there are no transition between there is r s, 

between p to s there is no transition p s; p r is there, there r to s there is, so there are no 

transitions. If you look at this, we will not find any transitions. Now, the point is here we 

defined the outputs is a; declare different way of defining it, we define the outputs as the 

once which have got different outputs, sorry I am I am sorry here I will say call it the 

final states I will call the final states to be the states which have got different outputs. So, 

which are my final states, differing outputs, this one is the differing outputs one, this is 

another one, and this is another one. The name is the bit peculiar you can call it 

dissimilar output states all right dissimilar output states. So, they are this p s, p t and q r. 

Student: (Refer Time: 20:48). 

Exactly now these are the; now I would rather prefer my name instead of calling them 

final state, let us call it dissimilar output state peculiar. 

Now, let us go back a second. What is my basic idea of equivalence between two state 

machines? For the same input the output should be same wherever, when I compose 

them wherever I get the outputs to be different there are my danger points, but as you can 

see there are not reachable. So, those will never be arrive that. I will simply arrive at only 

in the valid states which are got the same output. Also now you check that for the same 



 

 

input I am coming to this same output; for a, from x, I am coming to y; for b, from y I am 

coming to y, so that is it. So, these two are I mean, so this is proper equivalent use to 

FSMs equivalence. This is one way, there are other algorithms too, but this just to 

illustrate the idea of what is mean by FSM equivalence, this is what we present. 
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Next, we come to model checking. We have seen that we have got three different ways 

of formal verification - equivalence checking, and model checking and theorem proving. 

So, let us talk about model checking. So, suppose we have got machine consisting of this 

four states. So, we have got states transitions, here I am not showing in the labels, but 

these are there. Now, along with that something that we will introduce now are the 

temporal properties. Temporal properties are properties which are associated maybe with 

each of this states, or transitions, or overall I can present some temporal properties. 

For example, if I considered, suppose here I have got some temporal property P 1 some 

temporal property P 2, P 3, P 4. And say overall I make a temporal property P, which 

says thus phenomenon P 2 will eventually lead to P 4; that means, some P 1 is some 

properties. If this properties satisfied sorry P 2, if P 2 is satisfied at any point of time then 

ultimately in this machine P 4 will also be satisfied. What is P 4, P 4 is another property. 

Now, these properties are presented to the model checker. So, I have got the model 

checker here, where I am feeding this properties, and I am feeding this model and it is 

giving me the outputs which can be true that is this property is satisfied or it will say 



 

 

false plus a counter example. And that is very beautiful, because if it is satisfied I am told 

that ok that is satisfied that this circuit. So, here what are we checking, till now in 

equivalence checking we were given a model other specification and their design and we 

have trying to find out the equivalence between these two. 

Here, what we are doing, we are doing something different here we are given some 

properties and the models. And our job is to see whether the properties are satisfied. For 

example, typically a property can be that in this circuit say the output of the JK flip flop 

will give a sequence 1 0 1 ultimately at some point of time it will give a sequence 1 0 1. 

The D-flip flop will always remain in the state of one for example, very in that case why 

do I put at D-flip flop, but just for the sake of example I am saying always it will be in 

the state of one. This property is it being satisfied by the other properties and this entire 

model that is being given. 
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The typical properties are say for example, let us look at this diagram, and typical 

properties that are given in under this temporal properties are something like this. Say 

some property is true on all paths P that means let me denote as say P on all paths O will 

be true say P is some proposition or some paths P will be true. Now, this you can find 

those of you have done proposition logic, proposition predicate logic, you can 

immediately see this is the same as our universal and existential quantifiers. For all x P is 

true for all X there it was X some variable some here it is for all time P is true there exist 



 

 

some path or sorry here its x all right for all paths P is true there exist some paths for 

which P is true. 

Similarly, we can have always P or this also told as globally. There is globally always, 

there are different notations there are some notations like this it is a very popular 

temporal logical notation. Eventually P that is shown the here the notation is F P 

typically in temporal logic will find diamond notation I am sorry this is a looking the 

same. So, these are some typical temporal properties which are specified over this. 
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Now, for example, how do we take that let us illustrate this with the same example that 

we have shown here. Say if I just quickly rework this. Now, this sorry there was another 

one if I unroll this it will be an infinite computation tree. What sort of tree it will be say 

start with S 1 any one I start as a route. So, from S 1 I can go to S 2 all right, or I could 

have gone to S 4. So, I want to making it a binary tree sort of thing. From S 2, I can go to 

S 3; and from S 3, I can go to S 2 or I could have gone to S 4; from S 3, I could have 

gone to S 4. So, it is coming to the same scenario. And from S 4, I can go ahead from S 

2, I could have come to S 4 that was the possibility. And from S 4 I could have I mean 

that should be continues similarly S 1 to S 4, S 4 to S 4 in that way it can go on right 

something of this are. 

So, in that way, now let us look at some property states. If I say on all paths S 2, on all 

paths S 2 let us see on all paths S 2 is not true right there is a the path there is S 2 is not 



 

 

true. So, immediately it can say that here is a path there is S 2 is not true. So, here we are 

start is no way if there was an edge from S 4 to S 2 then on all paths say could be S 2 

possible. On some paths S 2, true; on some paths S 2; always something always if I say 

always S 4 succeeds S 2, is it true, no. So, which one is always true, which one is always 

true? 

Student: S 4 succeed S 4 always. 

S 4 succeed S 4 always, yes, anything else? 

Student: (Refer Time: 34:41). 

S 3 succeeds S 3 succeed S 2, but here what happened yeah this is true. Eventually, S 4, 

no it is not because ultimately if I follow this path, S 4 will be tree; if I follow this path 

now here also after S 2, S 4 will ultimately. 

Student: (Refer Time: 35:09). 

Yeah, it can where is my diagram no S 4 if we ever reaches S 4 it will be continue over 

there S 4 to S 3 it cannot go S 4 is becoming a sink here. 

Student: (Refer Time: 35:26). 

No, no that so I am saying this everything is not being reflected in this diagram in this 

example, but that is how we can say these properties and we will see whether this 

property is holding, and how do you see that by expanding this machine in to a 

computation tree. But what is the problem, the problem is it will lead to a state space 

explosion. So, it can lead to a; we cannot say eventually S 4, because as you can see here 

S 2, S 3 it can just cycle over here. Ultimately depending on whether S 3 to S 4 transition 

will take place or not that we do not know right, so that is why it will leads to some sort 

of state space explosion. 

So, for that this is one approach in which model checking is done. And we look at 

different properties and analyze whether this properties are available or not. And since 

there is a state space explosion, we take recourse to several heuristics to proven that tree 

and see which are the properties, which part of the tree needs to be looked at for which 

properties etcetera. 
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Now, just to conclude, we will mention about I will just touch upon the theorem proving 

approach just for the sake of completion, as a third approach of formal verification. So, 

say for example, some formulas, we start with some formulas for the specification. 

Formula means well formed formula in a given logic, some given logic typical logic can 

be first order predicate logic, higher order logic or it can be temporal logic. And similarly 

formula in a given logic for the spec; and formula in a given logic for the implementation 

and there are assumptions about the particular domain which are typically the axioms of 

the background theory etcetera, all those things. The output that we want is a proof we 

want to find a proof as the output that proves that the spec is same as the implementation 

that is the theorem proving thing. 
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Just quickly I will give you an example and that is again from electronics. So, we need 

not bother too much, but I know some of you are afraid whenever you see CMOS circuit, 

but say here is a circuit and I am giving some input y, and taking some sorry x some 

input x and I am taking some input y and there is w 1, w 2, and there is ground. So, this 

is a typical CMOS inverter. Whatever x is given, y will be a inversion of that. 

Now, we can say that there are some assumption, this assumption can be say V d d y that 

means, it is y is true. Ground y, y is the output ground y is y is equal to false; that means, 

ground is there is zero level. N transistor, a typical N transistor has got x, y 1, y 2 and it 

leads to x is to y 1 is equal to y 2. In that way, we can similarly I can make something 

about the p transistor. Now, the implementation will be so I have got some assumption 

implementation of x y is something like w 1 and w 2, these are the paths V d d whatever 

is there in w 1 and P transistor x, w 1, y; and n transistor, you need not go inside this and 

just trying to show you how it looks like and ground w 2 that is my implementations. So, 

this entire thing this entire thing describes this implementation this circuit and the 

specification can be x, y is looks so simple y is not x. So, what we have to do given this 

assumption and this implementation, I have to do that derivation and prove that this is 

holding. 

Now; obviously, is just to give your feeling I did not explain all these things. So, much, 

but just to give your feeling that even for an inverter description in this logical form is 



 

 

very complex turning out to be very complex and thus pure improving representations 

become quite complex. And therefore, the drawbacks of formal methods of course, there 

are many advantages, the drawbacks of the formal methods are for equivalence checking, 

you have to do a comparison between these two. Theorem proving is not finding so 

much space in the industrial yet because of too many reasons one of them is that most of 

the designers do not have enough background in formal logic, high order logic. 

The models must be expressed in logic formulas as we have could see the simply turned 

out to be (Refer Time: 43:48) and there is very limited scope of automation that given 

this how do automatically generate this logical formula. For model checking the problem 

that we saw was the state space explosion problem and for equivalence checking you see 

that equivalence checking is much more accepted in the industry and we have got the 

algorithms to find out the equivalence. 

So, there are lot of work going on in formal methods. And when we go for formal 

methods for hardware-software co design I mean then the thing becomes formal methods 

serving adopted for software verification as well. So, software verification hardware 

verification are gradually coming to at the same level, where the same setup tools can be 

apply to both. So, as the embedded systems are becoming more and more complex day-

by-day, we need to have better verification tools, so that we can first verify the circuits 

about their real time properties, about their critical natures, before you go to the market 

and for manufacture. 


