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Good morning, today we will be discussing about different methods by which we can 

evaluate a design. Say, we have seen also the series of the lectures that we had we started 

from a specification. We had a specification and then we also studied the different ways 

in which a specification can be made. Since, the specifications are executable, they can 

also be at that time they can be checked whether the specification is actually capturing 

the design intent. And after that we have gone through the hardware-software 

partitioning, we have done the hardware synthesis, we have done the software synthesis, 

we have done the optimizations. Ultimately what we get we need to test that whether that 

is actually giving us the desired output for the desired set of inputs. 
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Now, there are different ways in which it can be done the say we can call all these under 

the umbrella of validating a design. So, we have got a design, and we want to validate 

that. The different ways it can be done is, one is simulation-based methods. In the 

simulation-based method, what we do is we run a model - a program a model of the 



 

 

entire system, let us call that that system is the model of the system is S m. We provide 

and that is that model is executed in a computer. This program that is being run is being 

fed with specific inputs and we get the outputs. We keep a trace of the outputs, and we 

also go to check whether these outputs correspond to the correct outputs that were 

desired with respect to these inputs. 

So, for every input there is the necessity there will be some output, and whether the 

actual output that I have got is the same as the desired output or the ideal output that 

should have come. So, in that way, if I want to do that, so then I need to specify input 

test vectors the series of inputs that I give over here are the input test vectors, I am giving 

one after another like that. So, there will be a series of such 1 0 patterns you can think of, 

and may be the next one is I will show an example a little later like that a series of 

vectors, now what is the happening each of these ones and zeros are stimulating different 

parts of this software. This software is simulating the system. 

So, the different paths of execution needs to be excited and each of these different inputs 

will some I mean will excite or not excite, some paths and ultimately for that particular 

path that is being excited I get some output. Again for some other pattern of excitement I 

want to get another output. So, in that way I want to have all the possible paths in this S 

m covered. Accordingly, we will have to design the input vectors. So, corresponding to 

the input vectors, there will be output vectors for each of these input vectors, there will 

be some output vectors. And we check the correspondence between these two, whether 

this output test vector correctly corresponds to the input test vector so that is the 

simulation based method which is very popular and in design automation circle or 

embedded system design. 

The other approach is let me first come to the other extreme that is the formal methods. 

Now, formal methods why do we call it formal, because it takes some formal logic 

representation; and using that we want to perform certain things through formal means 

not by running the program and checking whether the output corresponds to the input. 

We try to prove certain things mathematically; and for that, there are different ways of 

doing that say one is equivalence checking. 
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Let me clearly say what we mean by equivalence checking, what is that. We have got a 

specification, for example, the specification can be a finite state machine. And ultimately 

through the design process, we arrive at a particular implementation. So, I had an FSM 

finite state speci automater may be some FSA, was here and a sequential machine I have 

got say I have synthesized them. Now, my question is does this implementation actually 

achieve this finite state this specification, whether the implementation achieves the 

specification. In order to do that, I want to see whether the behavior of this sequential 

machine is the same as that of the behavior of the finite state automata. 

So, this and this I want to see are these two specifications equivalent? Formally I want to 

see, contrasted with the simulation method where I was giving all possible inputs and 

was getting the different outputs. And from there, I wanted to see whether the outputs are 

corresponding to the expected outputs for the different inputs that is one way I am doing 

it one after another with all possible excitations being given in the circuit. Here we want 

to formally see that the description for that obviously, the sequential machine has to be 

described in some form of language, which may be another finite state machine. And the 

specification is also given in some language. 

Similarly, we can see the specification and a program. So, for software we can see that 

whether our program actually program is an implementation of a specification. So, 

whether a program actually achieves the specification by checking the equivalence, so 



 

 

equivalence checking is one of the ways of doing it. There are other ways, we will see 

that like model checking, and there is a more rigorous way, but more expensive is 

theorem proving. So, these are typically the three different ways in which formal 

methods of validating a design or verifying a design, this can be also called with the 

verification methods. All these, these are the three different ways of doing it 

 In between these two, in between these two methods, we have got semi formal methods, 

where we take recourse to specifying the input and output input and output specified as 

symbolic expressions and we check the simulated output with respect to these 

expressions. So, the desired inputs and outputs are given as symbols, symbolic 

expression may be a predicate, a behavior an assertion all right some sort of proposition 

or predicate may be in different logic format like temporal logic or normal propositional 

logic. And we try to see we simulate not the exact model of the machine, but a logical 

version of the machine and then we see whether, so that is a symbolic simulation it is 

called. 

Then we try to see whether the specified symbolic expression that symbolic expression 

that depicts the input and the one that is being transferred, so there is an expected output 

given in the form of a symbol. And when we give the input and process through the 

symbolic model, we come to an output, and we check whether these output corroborates 

to the expected output. However, we will be concentrating on these two in this course; 

this can be done later on also. 
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Now, today we will be first talking about the simulation methods. So, the task of 

simulation, since it is very popular is to create first of all we should consider this D U T. 

D U T stands for design under test. So, I am trying to test this. So, I have got some 

stimulus generator S, and this monitor M; S is stimulus generator and M is the output 

monitor. And we are feeding the specification to all these to this and this, what I this 

specification will generate the stimulus. And this stimuli will be fed to the design under 

test. And correspondingly this design under test, the simulated model of the design under 

test will generate the monitor. 

The thing is like this that I take the entire design I have got the design and before I float 

the design I make it available in the market I run it in my lab with all possible inputs, and 

see whether all for all possible inputs now whether it gives the correct output or not. 

Now, in a simulated version I am not actually making the thing in hardware and 

encapsulating that making a box, before that I am making a software model of the whole 

thing and running it in a simulated environment. Now, the key word that I said here was 

all possible inputs. What do I mean by all possible inputs, for example, there may be a 

we will see that, there may be a number of paths some of the paths may never be 

traversed also. So, how can I ensure that I have generated large enough inputs, so that all 

possible paths have been traversed that is the key question here. 



 

 

However, we will come to that, but this specification is can be done in the form of 

natural language most ideally, but unfortunately you know that natural language remains 

incomplete and an ambiguous at times. Therefore, we have seen different specification 

languages, which will be fitting in here. And that will be creating the interesting stimuli. 

I am saying interesting stimuli, because the stimuli should be such that it will look at 

very interesting cases for interesting combinations, whether may be at times I may be 

judicious enough to decide that I will not create all possible inputs I do not want to 

traverse all possible paths, I will just see the critical paths may be, because most of the 

paths own talker very frequently.  

So, I can take that risk at the gain of the simulation time. So, many such judgments can 

be done. And we get the outputs, and these outputs will be monitored and ultimately 

these outputs should tell me the failed cases that you see here for this particular input the 

output was wrong. So, you can now look at the field cases, and reexamine this design 

that is the overall idea of simulation fine. 
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Now, what are the main drawbacks of this simulation approach? The main drawback of 

this simulation approach is first of all coverage. First drawback is the coverage. 

Coverage means now one thing that I should have told here, that this design under test 

can be specified here in the form of say this can be an HDL specified under HDL C or 

both of them. Why both, we will see that because we are talking of hardware software 



 

 

code design where we may prefer to write the hardware part in HDL and the software 

part in C. So, therefore, it can be both all right. Now, given this we have got HDL 

statements, may be where there will be some conditional branches, signals may be FSM 

states if I write in the form of an FSM. So, if I have got 40 flip flops in circuit say then 

how many possible states can be there to raise 40 that is a huge segment. Now, I will 

have to traverse all possible paths say at this point with some input, I come here; with 

some other output, I input I come there. 

So, in that way, all the possibilities that will be there all these branches that I am drawing 

are the possibilities for different inputs different states I am arriving at from different 

inputs, and this will be huge. Therefore, in order to cover them that becomes a real 

coverage problem. How do I ensure that I have generated all possible inputs that is 

covering all the outputs, if I want to do that then the size of the input set will be very 

huge. And more than the size of the set, it becomes often very time consuming to run the 

simulation. You say that if we run a simulation of a circuit at a gate level with all details 

it can take million, millennium. So, I mean when the real time takes one day, it takes 

millenniums like that. 
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So, in order to support this, there are some test bench authoring languages by which we 

can write how to generate the input set vector, I am just mentioning some of them Vera 

is one such language, Jeda is another such language, test builder is another such 



 

 

language. Now, all these are state test bench authoring languages. What are test bench, 

test bench is a set of inputs that I have to generate to get the desired coverage. The 

coverage thing can be, now how can we improve on that. We can have different we can 

think of different means of improving on this stimulus generation. We can also see 

whether I mean we can take make interesting decisions regarding how do I minimize the 

stimulus set, so that I can traverse and cover the most critical path where I cannot allow 

any failure. In a complex design there may be some had hazard, I mean critical path, and 

there will be some even if they fail the performance may fall, but will not be 

catastrophic. In that case I may afford I may decide to afford to leave those out. 

Now, how can I generate such stimuli that is a very interesting and challenging problem. 

Just to give an idea of what I mean by coverage let us look at this that suppose I have got 

an AND gate here, I have got an OR gate here exclusive OR gate here. I am just showing 

you in the form of hardware, but it is also true for software because software is nothing 

but implementing the logic. Now, all of these inputs are coming to different buses. So, 

this is one and this is another. 

Now, suppose at this any of these can go back right any of these case, now if I put 1 1 as 

the input vector what will it cover 1 1 will excite this, and I will get a 1 here. So, if it is 

testing whether the AND gate is correct or not. But if I look at this 1 1 is giving a 0 here, 

but that does not tell me whether this is all right or not because a 0 0 would have also 

given a 0 here, it may be stuck at 0 also, I do not know the about that 1 1 will also give a 

0 here. So, I could not excite this as well. 

On the other hand, if after feeding 1 1, I feed 0 1, 1 1 will cover this thing 0 1 input if I 

give then this will become 1, and I can say that this is all right; and this will also become 

1, I can say this is all right. So, this is the input 0 1 is the input 0 1 is the input that is 

sensitizing this path to see whether it is all right or not. So, this is sensitization of path. I 

have to find the input vector such that all the paths are sensitized now. 

So, in order to sensitized all the paths, what should be my input vector set, what should 

be my set of stimuli it should be 1 1 and also 0 1, these two, only for these path three 

paths you see I needed two right. In that way there is a two simpler case, if I do both of 

them then both all these things are covered right. Now, only for this small circuit; so for 

a more complicated case, it will be even more complicated.  
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Next, how can we one major problem is of simulation is the speed. Simulation is not fast 

simulation takes time, let me say not that verification and other approaches do not take 

time, but simulation of a complex circuit consumes a lot of time. 
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Typically, I can just show you one example I do not know whether it will be visible or 

not. See, if I take, is it clear? Say, if a circuit if simulated by an FPGA takes time of 

about 1 day. If I go on want to do a system level behavior it will take 1000 times more 

time, so it will take around 1.4 months. System level, if I just do the bus functional level, 



 

 

I look at the buses also what are the communications that are going through the buses all 

those things in my model it will take 1.2 years. If I go further down to the cycle accurate 

system level and every cycle it is accurate or not, then relatively you see it will take 

around 12 years and the thing that hazardous think that I was talking about is not visible 

here at the same scale and RTL will take 1 lifetime. And a gate level will take a million 

year, so that is the way the simulation speeds vary. 

So, how can we speed it up? Practically speaking we do not go for event based 

simulation we try to restrict ourselves often in order to make the simulation faster, cycle 

level simulation or we call it cycle accurate simulation. Because say within a cycle if I 

have a, so I will just test at the clocks here I will check, here I will check. In between 

these, see if I suppose I consider a bus here, even in between this time say in this time, 

let me call it c - a cycle, lot of data is going through this bus. I am not actually looking at 

all these information that is flowing here, I will test it here I will next run I will check do 

it here. The simulation is restricted to the cycle level in between whatever events take 

place I am not going to do that. So, while event based simulation becomes even slower, 

cycle level cycle accurate simulation may lead you to a better situation. 

The other way we try to do is emulation. The entire thing we try to emulate on some 

hardware. And the best possible tool that we have we already know that we can simulate 

the whole thing or emulate the whole thing on an FPGA wherever possible we do that on 

FPGA, and the FPGA will run faster than this software. So, these are two popular ways 

by which we can try to make the simulation faster. Next, we will briefly talk about what 

we mean by since we are working on embedded systems and embedded system is not 

hardware alone. 
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So, we are talking about hardware-software co-simulation. What is co-simulation is it 

clear? Let me write it here. I have designed, I had the specs and from the specs two 

different processes I have designed the hardware, I have designed the software. And 

during our discussions about hardware-software partitioning, we also have seen that the 

hardware and the software depend on each other. So, if I test the hardware separately, 

and the software separately, I can meet some problem points like for example, the 

simplest possible example that I can give is in the hardware you have got an 8235 

programmable timer. 

How can you test whether your operation is being done? Unless you know that it has 

been initialized properly at the correct time, or for example, some interrupts all right 

whether the interrupt service routine it is working properly all right or the interrupt 

controller has been programmed properly. So, all those things come into picture. So, we 

need to simulate both of them together, so that is known as hardware-software co-

simulation. 

The way we do it is traditionally what was done is software was simulated first, I am 

sorry software was traditionally tested, after the hardware has been fabricated. I fabricate 

the hardware and then run the software on this and see, so that takes a long time to 

market. But we are trying to do this simulation, so that we can test it even before the 

manufacturing therefore, integrating the hardware and software at an early stage is 



 

 

required; at an early stage of design, we want to do. So, that means, now this means that 

I will have to do for the hardware I will have to do a custom hardware may be hardware 

simulation plus for the software I will have to do a process model simulation. Both of 

these I have to do together. The hardware is being done through some HDL may be 

described and the software I have to may be in C++ maybe I can do it through that. 
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Now, so for the software we actually need the instruction set. So, for the software 

simulating, the software typically we simulate we take ISS, which is instruction set 

simulator. And the simulating the hardware will be I have got HDL, say for example, if I 

describe it in very long I can immediately simulate it. So, we have to merge, if I want to 

do both of them in the same platform by co-simulation tool should have the provision of 

capturing the ISS as well as HDL. So, that is the main challenge in co-simulation, there 

are a number of systems which have been developed for this. One of them is POLIS 

system you can see that that is by University of California, Berkeley, UC Berkeley has 

developed this for those of you are interested you can look at POLIS at the UC Berkeley 

site, it is a very nice tool which has integrated all these and integrating all the models. 

Now, the ISS model of the microprocessor runs the system software. So, ISS system 

software means the software that I have designed for the embedded system all right even 

the microprocessor can be simulated because the microprocessor can be represented 

using HDL. Whenever we are selecting a microprocessor say 8051, we have got the 



 

 

VHDL code for that, so that code is coming as an HDL, HDL can this one can lead to 

specific processors and ASICS. What is left the thing that is left is the communication. 

So, I have got a two simulators. So, I need a communication between the simulators. So, 

I can try to arrive at a scenario, where I can have a heterogeneous co-simulation 

environment. 
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Where I will have a C- VHDL or a C-veri log type of environment simulation 

environment; just to give an example that the software has been written C and along with 

that, so that is an environment plus we can say remote process communication we can 

use some inter process plus some inter process communication that we have already seen 

that we can do using message passing and other means. So, basically we can think of that 

here is a hardware simulator here is a software simulator, and they have got some I P C - 

inter process communication. And they are communicating among themselves and this 

entire thing gives me the co-simulation environment, so that is for simulations which are 

one of the ways by which we can validate our embedded system.  

In the next class, we will look at how we can adopt the formal methods of achieving such 

validation. 


