

Embedded Systems Design

Prof. Anupam Basu

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture- 44

Digital Camera – Iterative Design

(Refer Slide Time: 00:32)

.

So, in the last lecture, we had seen the basic tasks that are required to be performed by a

digital candidate. And we also mentioned about the nonfunctional requirements, I once

again repeat those for the sake of completion. One is that the images must be captured

and processed within 1 second that is reasonable constraint, and that is a constrained

metric. We must optimize on the number of gates, so around 200,000 gates will be there.

A smaller solution is preferable, the power should be less as this as possible and the same

is for energy.

(Refer Slide Time: 01:17)

And here we saw some informal way of functional specification where we mention these

steps that zero-bias adjustment, then discrete cosine transforms, then quantization then

archival in the memory, and that 64 by 64 image we take into 8 by 8 blocks, so we repeat

this 64 times.

(Refer Slide Time: 01:57)

Now, that was the informal specification. Now, we have to further refine this

specification that can be actually executed. What we are showing here all these tasks

taking the CCD input, preprocessing it, doing the compression part and encoding and

then storing it in memory. All these things we need to test and here we can specify it in a

much more refined way, where we can put an executable model of the digital camera. So,

as if I am actually running the digital camera on software.

So, here I will have a file that will capture the image, image that the CCD is coming

from the lens and is coming on the CCD. And whatever CCD does I can write a CCD dot

c program, for that here everything is we are using C or C++ code to describe every

function and that will provide us the insight into the system. Once you do that I can do

the profiling and see which part is taking more time as I execute this bunch of c codes, I

will see what is where the hotspots are which one is taking more time which one is

taking less time.

Next, we come to another code module which is CCD preprocessing, preprocessing of

CCD. We have seen what we preprocessing consists of, preprocessing consists of zero

bias adjustment and then we will have to do the here is another model called codec

where we are doing the compression. And for the compression, we are doing DEC dot C.

Now, there is a controller module which is actually controlling the invocation of all these

c programs. And once this program is done once this steps are done then we can come to

this another module software module called UART dot c.

What is UART? Universal asynchronous receiver transmission that is for sort of some

serial communication, through that we can send it through some output file to (Refer

Time: 04:28) and that is the overall functional specification. Now, once we get this

functional specification, now let us look at the individual modules, I did not go into the

details of the c code because you know the function it is already.

(Refer Slide Time: 04:48)

So, what happens in this CCD dot C, it is simulating the real CCD. It has got three parts

three other sub functions; one is CCD initialize, which one is accepting the image file id

file handler and the row and column indexes are initialized. Then comes the CCD

capture, CCD capture is reading the image from the file. So, it is rewind image file

handle and then for rows up to the size of the rows. So, for us it will be the image will be

64 by 64.

An internal loop up to column 64, we are scanning the image file reading the image file

pixel by pixel. So, because the light was incident on the different pixels and depending

on the image, different intense it is went our different pixels. So, we take that and we

create a buffer. We are writing that pixel on the buffer that is the capturing the image in

the buffer. Then there is another function pop pixel that means, I am popping each pixel

popping the pixels here pixel is getting the buffer row index that that one that is being

captured by CCD capture. So, each pixel is being pop and if and accordingly the row

index and column index serving modified, so that is the CCD module what is being done.

(Refer Slide Time: 06:39)

Next in the flow is the preprocessing module. In the preprocessing module, we will

perform the zero bias adjustment. CCD capture the one that I am showing again here,

uses here is CCDPP capture that means, preprocessing you are doing here what we are

doing here for every row and column we are taking the pop pixel output. So, I will got

that pixels now the top pixel output and then I am adjusting the buffer. How I am

adjusting the buffer, I am taking the values of the last two columns of those and dividing

that by two that is my bias and that bias I am subtracting from the row and column index

that the one that I explained in the last lecture. So thus I am doing the preprocessing

stage. So, again I am doing the pop pixel when I get the pixel I am doing the remaining

tasks here. So, we have done the CCD capture then we have done the CCD pop pixel

sorry CCD preprocessing. Once the preprocessing is done what is the next step that we

should follow, the next step would be the compression part compression part.

(Refer Slide Time: 08:18)

So, I am just keeping the UART module here. And the compression part is being done by

the codec module. It is modeling the forward discrete cosine transform encoding. The

ibuffer, there are two buffers, ibuffer is holding an 8 by 8 block, obuffer is holding the 8

by 8 block after compression. Codec push pixel called 64 times will come to that here.

So, here therefore, one is just the declaration ibuffer 8 by 8, obuffer is 8 by 8. Then

codec initialize is making the index to be 0. Now, codec push pixel, what it is doing is

taking in the ibuffer 8 by 8, first 8 and it sending it over here. Now, what is it doing, this

codecdoFDCT is forward discrete cosine transform. I am not; so here its calling it is

taking x, y if you recall in that discrete cosine transform expression, we had the intensity

as d x, y and that was being taken and then that was being cosine transform.

So, here we are taking the x and y values for each pixel from the ibuffer, and doing

FDCT on that right for where discrete cosine transform and putting that in the output

buffer. And then the codec pop pixel is again putting that on the output buffer from the

output buffer to the pixel. So, codec push pixel is called this one 64 times to fill buffer

with original block 8 by 8, and that will go on. Codec do FDCT will be called once to

transform the 8 by 8 block because that is being done here in the loop to transform. And

then coded pop pixel is called 64 times to retrieve pixel by pixel.

(Refer Slide Time: 10:48)

Now, FDCT module here we need not go into the detail, you can try that in any mat lab

and other tools. But just to put it in the context this is the expression that we had shown

for the cosine transform. Now, that for this cos part, we are storing a cos table where the

different values are stored and we will take the d x, y and corresponding to the given x

and y I will select the element from this cos table and we will multiply with it all. So this

cos table is pre stored and for this basis function one by square root 2 l so on one that is

kept here. So, what happens here in this forward discrete cosine transform? We are

taking eight rows one by one and for each element of the row x 0 x, x 1, x 2, x 3, we are

multiplying that with the cos value of the table, which is pre stored.

We are putting over here we are normalizing it with 32 k, the floating point values are

multiplied by this 32 k and you see here whatever we are getting from the cos table, we

are dividing that with this and that is chosen. So, that we get in 2 bytes of memory 32 k

pay for each of the multiplicands are coming in 2 bytes of memory. So, this in detail you

can see in the textbooks or in other material, but here for our purpose, this is the code for

the compression.

(Refer Slide Time: 13:01)

Once the compression is done, then we come to the controller module because the

controller module is what is more important. And look here the controller module is the

heart of the system. It has got control initialized here where the number of rows and

number of columns are specified. Next, we control capture image, first of all we have to

capture image. So, we will do the CCDPP capture which we have shown earlier after

preprocessing and then will invoke CCD pop pixel get this, so that is being called first.

Then here you will see control compress image the controller is invoking the

compression.

So, basically what I want to say here is this that this flow is being maintained by, so as

the controller is taking one row with that bias and then taking it row by row, it should not

row by row, 8 by 8 and doing the compression, so that is being done by the controller.

And in the process it is calling code codec push pixels, it is calling DFCT and then it is

also doing the quantization. The quantization is it is taking the particular table, and then

dividing it by a particular number 2 to the power something.

(Refer Slide Time: 14:52)

So, integrating everything what we get is that quickly let me also mention about this

UART module these very simple, void UART send these actually a half UART because

it is only transmitting not receiving. So, void UART send a character, f print f the

character on the file that simple UART. So, we have to do, what will be our task that

diagram that we had shown is initializing the UART, initializing the CCD except all the

initialization. And then I am simulating the functionality, for that I am capturing called

the control capturing image that is controlled capture image is this one which has being

called which is invoking cddpp capture, which is invoking the CCD capture. And then

control compress image; that means, it is calling this one which in turn is calling it is a

follower discrete cosine transform etcetera. Then control send image. The send image is

somewhere here where is sending UART the upper byte and the lower byte, so that is the

overall flow.

Now if I now simulate this then I can very well understand that whether my functional

units are all right whether the data values are coming all right, and how much time it is

taking or not exactly the actual time, but it will tell me the relative time where it is

spending more time where, which are the hot spots in terms of more number of

computation and all those things. So, now, will come to designing the system we have

seen the task and we have done the scheming; now we try to do the design.

(Refer Slide Time: 16:55)

The design will have to first determine the systems architecture it can be processor any

comb I mean any combination of single purpose processors or general purpose

processors will map the functionally to the architecture will be the implementation. So at

the starting point - last bullet, at the starting point, let us start with a low and general

purpose processor. First, we try to since, you have to minimize cost, we first try to do

everything on a general-purpose person then we the first test turnaround time because I

will have of the shells microprocessor and a flash memory connected to that.

(Refer Slide Time: 17:37)

So, if I take a low-end Intel 8051 microcontroller, the total IC cost will be around 5

dollars nothing practically. It is well below 200 milliwatt power. Time-to-market is small.

However, where am I getting stuff, 12 megahertz, and if I need 12 cycles per instruction,

then I will execute one million instructions per second, 12 mega hertz and 12 cycles per

instruction then I will need one million instructions per second.

So, CCDPP capture where I am doing the zero bias that loop nested loop results in 4000

iterations if I look here, here CCDPP capture here, it will be 64 time 64 iterations.

Therefore, I will be needing 4 k iterations. And if I assume that (Refer Time: 18:57)

iteration there are 100 assembly instructions; that means, I will have 400,000 instructions

per image then half of 400,000 instructions per image, and I will need one million

instructions per second. So, half a second is gone I am assuming that 500,000. So, half a

second is gone only for capturing and preprocessing the image.

And after that doing the computation intensive DCT and all those will certainly I will not

be able to accommodate to my time constant of one second. I had the time constant of

one second. Therefore, after doing this analysis, fine said well signal micro process

solution will not do. So, what can I do the, second one is botheration here was the

CCDPP the pre processing part that was bothering that it up 50 percent of the budget.

(Refer Slide Time: 19:57)

So, now let me try to do this on a single-purpose processor an ASAP, ASAP or ASSIC

whatever I do, I do it on a separate (Refer Time: 20:10). So, my architecture will look

like I have got an UART I have got some 8051, and there will be another CCDPP,

CCDPP. Now, it will improve performance, it will require less microcontroller cycles.

However, it will increase the energy costs, but it is simple to implement the data path as

few states it is not because what are we doing there, what are you doing in the

prepossessing, we are just doing subtract some averaging plus I mean we are doing the

average and then subtract. So, we can reuse some other subtractors and have a simple

data path. And simple UART is also easily implementable.

(Refer Slide Time: 20:57)

So, now microcontroller here, we can have a microcontroller code, code microcontroller

thing. And from there all of you remember what is the code, we have got some course

already prepared and we have to synthesize on that, so that is already synthesized I am

sorry that is already synthesized we have to put it on the mask and all those. So, a block

diagram of an 8051 code will be some instruction decoder ALU some 4 k RAM, 128

RAM, 4 k ROM, and there will be controller. Now, this is not very difficult to do and we

will have special program that will generate the VHDL description of the whole thing

this entire thing is written in VHDL when it when a particular design is offered to you as

a core then the corresponding VHDL is given. So, you can synthesize from that VHDL

not a big deal.

(Refer Slide Time: 22:01)

Similarly, the UART can be easily computed. It will be invoked, this is the automator,

start then it will transmit the data till 8 bits sent that will go to stop. So, this is the cycle.

So, lower 8 bits will come to the RAM lower address, and upper bit bits will come to the

memory mapped I O devices. Now, so there is also simple designing an UART would be

a problem.

(Refer Slide Time: 22:34)

Now, the CCDPP, CCDPP the preprocessing will have the FSMD, let us see here we are

giving. So, what we did earlier, whenever we did some synthesis, we started with an

FSMD and did the synthesis that we did for the GCD algorithm that we also did for the

square root approximation algorithm. So, we now know how to do that, we know how to

schedule it and all those. So, we can handle this from this FSMD.

Similarly, the CCDPP, what is it doing it is a idle row 0 column 0; its getting low first of

all, it is not very clear. The buffer row and column is getting the pixel and it is going why

is its less than 66, I was having the image 64 by 64, but there were two extra column

therefore, I have to scan up to 66 and take the 65th and 66th columns and take their

average right. So, that is I am getting the row computing the bias here. And then fixing

the bias subtracting for all the elements in a loop, you see here there is a loop for all the

64 all the 64 columns, all the 64 columns I correct the error zero bias errors. And then I

go to the next row all right in this cycle, I go on. I hope it is clear to all of you is the zero

bias correction, so that will be my FSMD of the CCDPP.

(Refer Slide Time: 24:25)

And then we can connect all of these to make a system on chip. So, we had this I want to

have this as a system on chip with all the things on one chip, so that I can put that in the

camera. So, the I O is memory mapped, all single purpose processor and ram are

connected to the 8051s memory bus, processor places address on the 16 bit address bus

as our state control and all those things are done that is my second implementation. So,

in my second implementation, what do I have I have the CCDPP as a separate processors,

dedicated processors or an ASIC, and there is a 8051 and there is another UART.

(Refer Slide Time: 25:19)

And as I do this, as the communication is changing if I look at this here again, now the

UART original is the UART was the connected to the 8051. Now, the UART is (Refer

Time: 25:39) has to communicate with the bus. Therefore, my change in my hardware

decision will also affect the software. So, I will change this here little bit of change,

where earlier I was just writing as if in a file here I am not doing that here I am going

through a status register and as long as there is busy I am because I am looking at the bus

I am waiting whenever that is free, I am writing the data. So, this change has to do

because the communication. Each decision why do you call it hardware software code

design, the reason is every time I am making a decision that decision is affecting may

affect the other part also, so that is always happening as is being shown here.

Student: (Refer Time: 26:36).

That will increase your cost. The question is that why do we do this we have got we are

fixing some design decisions that this transfer will be done serially that we have decided.

If we had done it, if we had no constraint we could have said that we will do it parallely,

but that will increase the cost. So, we are not because that takes very little time even

serially and that is not when you are taking the picture you are transferring into the pc

and you are not so much hard paste with that time that is why.

(Refer Slide Time: 27:13)

Now, I have done the second implementation. How good is my second implementation,

the first one I did so some analysis. So, a typical way of analysis of standard way of

analysis will be that I have got a number of VHDL codes. So, all these VHDL codes can

be simulated, this could be very law codes as well. I simulate and I find the execution

time how much time it is take number one, but that is not the only thing time is 1, then I

am taking them and synthesizing them, so a synthesis tool. And looking at how many

gates I am getting and from there I am estimating the chip area. Remember our

nonfunctional constraint said we should restrict ourselves within 200,000 gates is that

being this respected also we have to look at the power. So, this is how we will be doing

the analysis of the different designs.

(Refer Slide Time: 28:25)

Now, as I do the analysis of our second implementation we find the total execution time

for processing one image is 9.1 seconds not done, our for one image we needed 1

seconds here it is coming to 9.1 second even after dedicating a separate processing

module for preprocessing. The power consumption is 0.33 watt not that bad. Energy

consumption is 0.3 joule. Total chip area is 98,000 gates; I am still in the range of

200,000 gates. So, can I do something can I add some more hardware to make it make

the process fast I can see that.

(Refer Slide Time: 29:23)

So, now I look at implementation three. The implementation three is looking at the

microcontroller and DCT. So, it should be initially, I will do floating point then I will

come back to fixed point. So, 9.1 second is not meeting my performance. DCT operation

is the prime candidate for improvement. Now, here at this level I can also see which one

is consuming how much time, I can find out the hot spot that is called profiling and I can

find out which are the culprits and here I can find that the DCT is a prime candidate. So,

execution of implementation two shows that microprocessor spends most cycle in DCT

computations. Could design custom hardware for the DCT, but obviously, that is a more

complex and more design effort instead, so, one thing is that I can do this where is it the

DCT path which was the (Refer Time: 30:50).

(Refer Slide Time: 30:50)

(Refer Slide Time: 30:58)

Now, let us go. So, our flow the next flow was the DCT. Now, the DCT 1, I was trying

to find this one yes. Here, this path would be designed as hardware just as we have done

this one as hardware, but that will be more complicated. Since that is becoming more

complicated, what we can try to do I will keep it in software, but I will work on the

software specification and modify the specification to see if something can be done.

(Refer Slide Time: 31:32)

So, let us try to do that. What we do the floating point DCT that was there, we found that

DCT was using around 260 floating point operations per pixel. And you know floating

point operations consume much more time and we had 4 k pixels per image 1 million

floating point operations per image. And there was no floating point support with 8051,

therefore the compiler must emulate that floating point and convert them to fix point and

do mult, add etcetera, therefore, 10 million integer operations were coming. Instead of

floating point, if we had gone for fixed point operation that would have saved much

computation time because 8051 would do that right.

(Refer Slide Time: 32:32)

So, next we come to the fixed point implementation of the coding. So, as we go for the

fixed point representation of the cosine values, this table changes, this table simply

changes because now all these values we will be doing in fixed points, fixed point

arithmetic. 6 bits used for the fractional portion. So, what is done you know each

fractional portion is converted to an integer when we do it a fixed point. So, result of

multiplication will be shifted right. So, the other things remain the same, other things

remain the same I simply change the cos table. So the multiplication will not now be

done in fixed point.

Now, as I do that and analyze it, so I did not touch the hardware I just change the

computation and we find that we can do oh still 1.5 seconds, power consumption is same

energy consumption what was the earlier one energy point; so energy let me see the

energy consumption was 0.3 joule and here it became less. So, battery life is six times

longer by doing the you see. So, whenever in a mobile phone or in a laptop, it runs out

the battery many things happens. How many fixed point operations you are doing how

many floating point operations you are doing that also affects the battery life. So, here

just by making it fixed point we could save on the battery life our chip area is even saved,

but our main constraint has not been met still it is 1.5 seconds.

(Refer Slide Time: 34:37)

So, what can we do, the performance is closed. Now, we have got no option, but to

implement the codec in the hardware. In the fourth option, we have to design the codec

in the hardware. So, we want to do a single purpose, but I am not doing by 64 by 64, I

am just doing a codec for 8 by 8, and I will invoke it 64 times.

(Refer Slide Time: 35:07)

So, as I do that that codec design will again the codec software will be rewritten in and

then from the C code of the codec, I will take it to the VHDL in the fixed point version

and then I will synthesize it.

(Refer Slide Time: 35:24)

As I do it then when I carry out the analysis I find that the total execution time is now

0.09, well under one second, well under one second, it has become too fast right. So,

might be if I a time, I would have done smaller first I do 4 by 4, and call it a number of

times all those things could have been done, but however. So, when I do this, so what do

I do for this codec design? So, I took this registers and converted into VHDL and

synthesize it. So, we find that the time has been met power consumption is slightly

increased because of the hardware. Energy consumption is less.

Can you tell me, why the power consumption is slightly increase, energy consumption is

less? The reason is energy is integral over time now the time is becoming faster, and less

amount is being done in the software, therefore my total energy consumption is less,

battery life has become 12 times. Total chip area increase of course, because this codec

has been done hardware 128000 gates that is a significant increase over previous

implementation, but my constraints are satisfied.

(Refer Slide Time: 37:05)

So, summary of the implementation; implementation 1 was not viable. Implementation

two are you see 9.1 was the time from the 1.5 then 0.99 my constant was one I have

made that. Now, this one is called the satisfying constraint or the constraint that I have to

satisfy I need not optimized on this. But these ones have to minimize as much as possible,

but here again no minimization was given. It was told that it should be low enough. So,

0.33, 033 and 040 not a big deal, the gate size is the constraint was given 200,000 it is

well within that limit. Energy as reduced, so that is a great product. So, we got this great

product by iterative design iterative design and this example has shown you that how we

analyze our specification and look at the different components and see how we can

optimize we identify the hot spot.

So, summarizing what do you say, we started to spec, we first of all we have to do the

proper task analysis, understand the task, otherwise you will not be able to fix where I

need to tweak the design, you will not be able to understand where I will have to tweak

the design. So, you have to understand this what is happening because suppose you do

you say that I will reduce the number of pixels that will affect the quality of the image.

So, what you can do and what you can do must be understood and for that you have to

understand the application process. Any embedded system designer must spend some

time to understand the application. Then we looked at the performance and we have to

do the analysis and it is an iterative cycle by which you see that where the shoe pinches

and there we have to see, first of all whether we can do it in software, if possible less

effort, otherwise you let it to hardware.

So, that was a nice example which summarized a number of things that we have done till

now. So, in the next class, we will look at some formal approach to hardware, software

partitioning, and we will move to optimization.

Thank you.

