
Embedded Systems Designs

Prof. Anupam Basu

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 38

Data Flow Model – I

So, in the last class we were discussing about SDL representation of a vending machine,

and we had shown there a number of functions; like the coin controllers, which accepts

the coin decode request block, each of those who were blocks right. Decode request was

a block that was decoding the request and was, looking at whether the correct amount of

money has been paid, and there was another one which was a, coin exchange thing, and

the decode request was also spitting out the actual product, when that thing has been,

enough money has been paid for that.

Now, as we had said that SDL is the hierarchical model. So, we started with the top level

where we had the blocks, and with each block we had the different channels right. We

had shown the different channels through which the input output can come. So, the next

level let us today first try to decompose that decode block.

(Refer Slide Time: 01:32)

So, that decode request block is shown here. You can see, that this decode requests

block, is being shown in terms of processes. So, these processes we have not shown in

the earlier level of hierarchy right. So, here you can see that the block; that is decode

request, is having a channel Radd which is receiving whatever is being added, and the

variable that is being added is add, and that is the amount handler, and this octagonal

shape means it is a process right. So, on amount handler what it happens, it rejects

further coins, or it accepts coins, spits out change alright, and displays the amount. So,

these are the, at the next level we are showing these details, that the amount handler what

does it do, what are the channels it is connected to.

Now, you can see that in the earlier diagram, we had the channel which was connected at

the top level, coming to this Radd, and this coin control. So, that is also by this connect,

we are making an correspondence between the higher level naming nomenclature of the

channel, and this lower level nomenclature of the channel. For example, when I am

saying connect C amount display, and R amount display. R amount displays this one

which is connected to the C amount display at that channel, which was at a higher level.

So, in that way we have got the nachos handler, chip handler, cookie handler, and coke

handler; the four things. So, this nachos handler is receiving the purchased nachos, that

command that some button replaces, for selecting the nachos, or if the nachos are all sold

out, then you will have to reload nachos. So, you reload nachos. So, these are two things

that it takes, and accordingly it spits out nachos, or give the signal that the nachos are

empty. In that way, we at this level lower level, we can show each of these processes,

and here we are again SDL allows us to put in some variables also.

The variables is nachos, capital nachos means, it is an integer which is two alright; that

means, the price of nachos is 2 rupees, price of potato chip is 2 rupees, price of cookie is

3 rupees, price of coke is 5 rupees. And maximum number of items is seven, for each of

them or something like that, so we can put that right. We are also having a signal sub,

whenever something is being given some one rupee has been paid, then this amount

handler is subtracting that amount that has been given alright, and this one is for

connecting now. Now, we are at the second level, what was there at the top levels. The

top level was the block description, then at the second level we show the process

description. What is the process? A process is nothing, but an FSM alright. Now let us

look at the chip handler process and blow it down further.

(Refer Slide Time: 05:21)

So, the chip handler will be something like this. There is a process chip handler, what is

it doing, is waiting for the purchase. somebody says purchase chip, you want to purchase

the chip, then sees whether the current number of chips are there, is whether its available,

if not then you will have to wait, if yes then subtract one chip alright, then n chip minus

1. Now this part is coming when, when I am coming to chip handler. I am coming to chip

handler when the amount. See I have just said purchase chip alright, but then you have to

pay the amount; that is being handled by the amount handler. This one is the only

handling the chip.

So, you see this purchase chip is an input and number of chips you are subtracting; that is

an output, sub p chip, number of chips is being reduced, you are spitting out the chip;

that is an output number of chip is zero, then you have to wait for the purchase. Purchase

chips, yes. Now you see here this purchase weight means it is coming, now it is waiting

for purchase chip, reload chip, is waiting for reload chip. Once the chip is reload, then

the number will be shown up. So, here n chip items is in items, n chip; that is the

declaration, that is equal to the n items, and current is an integer. What is the current,

view current presently how many are there? So, these are different declarations. So, in

that way the syntax you need not memorize, and there is no need of doing that whenever

you need, but the main thing is, to understand the philosophy that, we can decompose it,

at different levels of hierarchy, and this is basically an FSM, drawn in a different way,

where it is, these are the outputs and there are the input.

Student: Sir, if there is no output (Refer Time: 07:37).

Then you do not need to give this. If there are no outputs, say for example, here there is

no output, only input has come reload chip, you have put in an internal variable, and you

are wait alright. Next so, with that, with this example of SDL, we conclude our

discussions on state based representations. Next we move to another type of

representation, which is known as the data flow model.

(Refer Slide Time: 08:16)

Now data flow is very common, and very natural. In data flow model, we are not looking

at the states, we are looking at how the data is flowing alright, across the system, and we

will show a particular type of example.

(Refer Slide Time: 09:00)

Let me see if I can show you; say one example of data flow, I will show you; that is a

video on demand system. It is very common, you have all, in your software engineering

classes and all those, you have seen the data flow graph, where you have got the data and

the processes. Here you see, this is a video on demand system. So, what is happening

here? The data is coming in, and these rectangles are, the rectangles are the processes.

So, we, the viewers come to a network interface, and it goes to the customer queue.

Now, customer queue is a data holding capacity, sometimes in software engineering you

show it like this right, where you put in some data right, buffer sort of thing. And from

that customer queue it goes to the admission control. The admission control is a process,

which is selecting the customers from the customer queue. All of them are requesting for

video. It comes to the customer list, and then the customer. There is a scheduler process

which is taking the customer list, and then it is giving the network address, it is coming

to the file system. There is a storage subsystem, where all the videos are stored, then

storage control, the video data comes here, the network address of the customer comes

here, and the video data goes out right. So, here we are just showing the flow, we are not

talking of the intermediate stage right. We are talking of the data flow, the data holders,

and the processes that are dealing with data. So, this one tells us which particular process

is dealing with which data.

Now, how do you define data, let us data flow. There are several definitions. So, I would

not like to define alright, but a data flow model, consists of a couple of things, which are

processes; that is, these are the activities that transformed data, from one form to the

other. So, for example, here each of them, the scheduler is a process right, is a process.

Then there are data stores, which store the data. So, the holding areas of data; for

example, the example is again here the customer queue is, this one is a data store right.

There are external entities; for example, here the external entities are the viewers alright,

they are the external entities, and then there are data flows.

By data flows we mean the routes, through which data flows alright. That means, this

entire path, a particular data, if I just talk about a particular data, I am concerned about,

what is the path through which it is flowing, what are the processes to which it is coming

as an input alright, or which process is generating as a output, all those things. We are a

not talking about the states involved of course. There is a controller in between, but in

this model we are not looking at. Next we look at a very popular nowadays, and it is

becoming very useful also.

(Refer Slide Time: 13:57)

A particular data flow network known as the Kahn process network, or KPN. A lot of

research is going on now, modeling systems using KPNs. Now here each component of

the Kahn process network is modeled as a task. So, we have got some tasks. Now this

task can be programs or processes alright, and the tasks are communicating among

themselves. And they are communicating using first in first out type of queues. And we

are not considering any overflow; that means; essentially we are assuming that they are

of infinite capacity. So, let us take an example of a Kahn process network. So, here is a

task T 1. There is a typical task graph that we had seen earlier also, in another context

maybe.

Now only one sender and one receiver are FIFO alright. Therefore, I will have one

sender receiver here that is connecting to this. Similarly there will be one dedicated FIFO

between these, right. I am not too much concerned about the size of the FIFO, while I am

drawing it, because that is basically there will be no overflow, that is assumed in this

model. So, for each of them, there is a FIFO connecting them, so one sender and one

receiver, these are important, receiver per FIFO And since the FIFOs do not have any

overlap, and because of this, one sender and one receiver.

If you recall the situation that we encountered with, in case of SDL, there was a conflict

right, because every process was taking from one particular FIFO and a lot of processes

could write into that FIFO. Therefore, it could be that process p one writes in the FIFO of

p 3, and p 2 was also writing in the FIFO of p 3. Now the order there could be raised, and

the order could have changed, and depending on which one p 3 is consuming, the result

would be different. In this case we do not have that situation, because we have got

individual dedicated FIFOs, alright. That is the basic of Kahn process network that we

have. Now so, let us write down one example for this.

Student: (Refer Time: 18:28).

Between two processes, we have got one FIFO; that this one is writing into this. Now if

this one wants to write into it, then there will be another FIFO.

(Refer Slide Time: 18:48)

So, if I write this, the process f which has got input is integer u, another input is integer

v, and the output is integer w. Then maybe I have got two local variables int i and some

Boolean b, which is signed to be true alright. Now I do in an infinite loop, I do, i will be

depending on b, it will be either reading u, or will be reading v. So, how will that look

like in the Kahn process. Now this read will return the next token in the FIFO; that is

there, and waits if it is empty now this read, both these reads I mean, waits if the FIFO is

empty alright, and then I have got send i to w. What is w? W is an output channel right,

and then I make b assigned not, something like this if I do.

Now, what is this actually doing, what is this doing? This is, if I just draw it something

like this, then this process, is have taking input, from either u or v alright. So, must be

those are coming from two different processes. So, here my process f is here, and it is

taking data, from maybe another process p, which is sending it through u, and maybe

another process q, which is sending it to v right. And depending on the Boolean variable,

it will either take from this or from this. And if that is empty, it is waiting. Even if it is

there than the first one is taken, if the value is there, and then it is sending it to, maybe

there is one output, there is one cube here, and that is w, this was u this was v and is

going to some other process r, right. So, this is the data flow; that is captured in this.

Now there are some. So, what is the big deal about it?

(Refer Slide Time: 22:29)

The big deal about it, is that first of all in KPN, communication is only via channels

alright, no shared variables; that is number one. Mapping from one, more than one input

to another, more than one output is possible. Channels transmit information, transmit

information.

Now, this is important. In unpredictable we do not know beforehand. We do not know

how much time it will take, but finite amount of time. So, that system will be live,

because I am not taking into consideration anything about the implementation of the

channel here. Therefore, in general, the execution times are unknown, in general. Unless

I make a special case, where I say how much time it will take. This is one issue, that

execution times are not known beforehand, the other thing. So, we are all doing it

through channels. Now how does the channels communicate the data. So, let us look at

another example diagram.

(Refer Slide Time: 24:25)

Let us show it through a diagram, say there is a task, there is another task, and they are

communicating, and there is another task. Now there is one channel p 1, one channel p 2.

A process, say for example, this process, cannot take for the availability of data before it

commits a read. It is not like that I will perform the read only when the data is available.

So, it will try to read, if there is no data, it means that read will fail. Basically the data

flow model.

(Refer Slide Time: 25:17)

Let us diagnose a little bit, the data flow model that came, was something like this, that

suppose there is an operator plus, and there is an operator multiplication alright. Now we

have got data, coming from here, maybe this, maybe a b c alright. Now this is a typical

diagram, that this operator is taking this data. Now, whenever a data comes here; that is

(Refer Time: 25:54), I show it with a token, and whenever that data comes here. So, this

operation will fire, whenever both these data are available, and maybe it will produce

some data which may be z. And since b is available, this one is has fired, but might be c

has not appeared, but this is ready, is reading and failing. So, whenever the data comes

here, then also this one will fire; that is the data flow model.

So, the control, is therefore, when the read will actually execute, when the read will

succeed and progress, is entirely dependent on the availability of data; that is a little

different from the typical control base systems. So, it is, I mean we cannot do something

like this, if non-empty p 1, then read p 1 this sort of thing, we cannot. We are just doing

this, and a process. Another important thing is a process.

Student : (Refer Time: 27:27).

Yes that is the data flow. See all these models; all these models are your representation

of how you want to express your intention. So, this model is telling so much; say as if it

is just like this modeling are just like expressing certain things in writing, what you want

that you are showing through a model. Now please do not confuse it with the

implementation. Now, this model is telling, giving you some information, it is has got a

very clear semantics, based on that you can understand what the designer or the design

system will understand what is asked for, and then how it will implement, whether you

will put in some a handshaking signal or not; that is up to you. This does not mean that

that there will be no controller in this system, but in this model I am expressing what I

want. Now it is up to the synthesis system to decide on how this, they will be captured.

A process cannot wait for data, I mean for data, for more than one port at a time. I mean

as soon as the data is available; that means what? That means, a process has to commit,

to execute this data. A process cannot wait for data, for more than one port at a time. So,

this process is waiting for this data, from this, as soon as that one comes, its fine ok.

(Refer Slide Time: 29:37)

Now, therefore, since we are doing this, in this sort of scenario. The order of read, does

not depend on the arrival time, the order in which they will be reading, it will be purely

on the data, alright. So, it is a data, if the data is there, whether I read this first or this

first, it really does not take. Therefore, this Kahn process network is determinate,

determinant e, because is not that order is not so much required in this case. So, that is

very nice way of.

Student: (Refer Time: 30:26).

Which one, this process? No here this process is producing p 1. So, whenever it is

producing p 1, this one is accepting p 1, is getting there.

Student: (Refer Time: 30:47).

No, that is this data flow means that. So, basically if this one comes it will exist.

Student: (Refer Time: 31:02).

No we need both; therefore, p 1 has come. I am not executing, p 2 has come then I am

executing. Therefore, it is not dependent on the order in which p 1 and p 2 comes.

Student: The one which we are waiting for only that will be executed (Refer Time:

31:21).

No that will be received. See p 1 has come. So, I will accept this p 1, I will accept the p

1, and then p 2 can come a little later. As p 2 comes I need both of them. So, if the order

p 2 p 1 arrival, or p 1 p 2 is actually not meaning, not affecting; that is why it is

determinate this, there will be no race in this case alright. So, this is fine, but the main

challenges in this case, whenever we are trying to implement it. We have made a very

tall assumption, that there will be no overflow over the queues that is very difficult to

implement. Ideal it is not possible to implement; therefore, whenever we implement

some KPN, then the challenge is to schedule that we have to. So, I will discuss later in

detail, what is meant by scheduling of tasks, scheduling is very important. Scheduling

means if I have got a number of tasks maybe. And I am just showing another data flow

graph.

(Refer Slide Time: 32:36)

Am I showing it to the correct way? Suppose this a task graph, this a task graph. Now

scheduling essentially means, at which step I will execute which task. So, maybe you can

see that these; this and this, if the data is available. All these data are available, this one

is available, this one is available, all these are available, then I can schedule all of them

together alright, but due to that, may be the buffer, I mean the capacity may overflow.

Therefore, scheduling means which of these I will schedule in which control step, one

possible schedule could be, that in step 1.

Let us see this step one I schedule ask T 1 T 2 T 3. Suppose I task schedule T 1 here T 2

here. So, this one data is here, this one data is here, and T 3 maybe I schedule later, it is

possible, T 3 I schedule at a later point of state. So, this one comes here, this one comes

here. Although the data was available I am scheduling it later, because that is that is over

and above the KPN, the KPN said that all these things can fire together and work

together, but because of my implementation restrictions that I need to manage the buffer.

So, I may like to schedule them separately and maybe this one which could be done;

since both of them are ready it could be done at this step, I may like to schedule it later

also, this T 4 can be scheduled later.

So, I will discuss in de detail what is meant by scheduling. Scheduling means, essentially

I am just mentioning it here, that assigning control steps, assigning the execution steps to

the tasks. So, for KPN that is a very important thing that it is a challenge, that we cannot

accumulate tokens. So, therefore, we will have to proceed. The KPN's are very powerful,

but one problem is, it is very difficult to analyze, it connects. What do you mean by

powerful? By powerful I mean I can express, many of the tasks, many of the types of

computation in this, but it is very difficult to analyze, because of the accumulation of

tokens and buffering, alright.

Another point in KPN is, number of processes or tasks are static, so whenever the tasks

arrive in, new tasks arrive in, I cannot handle that with KPN. So, with that we conclude

the discussion of KPN and in the next lecture will move to another type of data flow

which is synchronous data flow.

