
Embedded Systems Design 

Prof. Anupam Basu 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture – 26 

Real Time O.S – I 

 

We have looked at how we can deal with the power issues in embedded systems. 

(Refer Slide Time: 00:35) 

 

Today we will start discussing about another very important part that is often involved in 

embedded systems design that is Real Time Operating Systems. As I had stated earlier 

that all the embedded systems need not be real time, but very frequently there are real 

time requirements posed to the embedded systems. So, the embedded systems need to be 

prepared for catering to real time constraints and for that often as we will see in today’s 

lecture. Often the general operating system approach is not directly applicable. 

Now, the points that really make the embedded systems design challenging is of course 

the complexity, there is becoming more and more. Nowadays we are not only remaining 

on one processor, but we are going to multiple processors also. And there is a mix of 

hardware, software; there mix of asics processor everything in that. So, while designing 

an increasingly complex system is more time consuming. At the same time we have got 

the stringent time to market constraint. We have to put it to market within time otherwise 

we will lose the business or whatever. So, these are two competing constraints; 



competing situations. And in order to overcome this hurdle the standard approach is for 

reuse of components. 

Now, reuse of components we came across this idea in the name of IP, whereas IP stands 

for intellectual property. Intellectual property can be of hardware and also it can be of 

software. Usually in the common terminology and common usage we often say 

intellectual property is to be the hardware course the processor course, but it need not to 

be restricted to hardware course alone it can be extended to the software also. So, 

whenever we try to design a an operating system for an embedded system then we will 

also try to reuse an take a standard operating system and try to see whether we can reuse 

that. 

Can we reuse the OS? Say I have got an operating system, but everything else of that 

operating system is not required. You see that whenever we are going to build an 

embedded system we have to keep into account mind not only the complexity and time 

to market, but also about the payload, it is a area, the size, the memory and all those 

things. So, we cannot make an embedded system to heavy. 

So, an operating system that has got a lot of functions may not be required for an 

embedded system. 

(Refer Slide Time: 04:41) 

 



 So, how can we approach that? So one way is reconfiguring or reuse means here or 

reconfigure an existing OS. So, there are some things which you should keep in mind 

when we are reconfiguring an existing OS for an embedded system we cannot tolerate 

any overhead for the functions which are not used; unused functions are not tolerated; 

not acceptable. In an operating system there are so many functions. Now for embedded 

applications I may not need all those functions, but I cannot also have the luxury of 

putting them in my memory and wasting memory space. 

And also we will find we will see that no single operating system, there are so many 

different applications in which embedded system can be applied. So, no single OS fits 

all; that means no single operating system can satisfy all our needs. So, one of the very 

popular approaches is to take an object oriented approach. What do you mean by this? 

All of you are familiar with the term object oriented approach where we have got a class 

and we can build specializations of those class subclass and all those things. 

For example, I have got a general class of schedulers which has got some features, but 

for a particular application I need a special scheduler which will have only a specific 

policy, specific time quantum, specific tricks embedded for that scheduler so that can be 

generated as a class subclass of the general scheduler class. So in that way different parts 

of the operating system functions we can create instantiated versions of the general class. 

So, in that way an object oriented approach will enable us to reconfigure our system to 

this. 

Another very popular approach is; but not very popular by the way it is a may be 

effective that is conditional compilation. I think I had mentioned about this earlier in 

some other context where we used some preprocessor commons like predefined if or if 

def type of statements, which means that the particular part of the code will be compiled 

under some conditions, but so that will be the compiled code can be therefore 

reconfigured depending on your particular application. But the major cons of this 

approach are that the code becomes highly unreadable with so many this things, so that is 

not very much used. 

Sometimes some advance compiler level decisions which is similar to this, some 

compiler time at evaluations; compile time evaluations are used where we use; while we 

compile we decide whether this is very similar to this. So, these two are only same more 



popular so I may not lay much stress on this, but let us talk about this. There is linker 

time optimization. Now this is quite obvious for as I said that for all applications all the 

modules are not required. Therefore, I can optimize there are different modules, but 

whenever I generate the OS, I compile with the link time; I link some of the modules and 

leave out the rest that is a very important way of reconfiguring the operating systems. 

Now let us not lose the perspective. Why are you trying to do that? We are trying to 

generate a quick version of an operating system. But in order to that I want to generate a 

quick version of the operating system that will create to some specific need and 

specifications. I do not want to make it unnecessarily bulky; I also do not want to make it 

inefficient. So, in order to do that I just want to; it is a component base design sort of. I 

will just take the relevant component and plug them. 

(Refer Slide Time: 10:56) 

 

In order to make the operating system efficient also another thing you should keep in 

mind that often we prefer static data structure over the dynamic ones. The linked list and 

all those we would like to avoid and we would like to replace them with arrays; very well 

possible. So, that is another approach we take in order to increase the efficiency of the 

performance efficiency of real time operating systems. 

Now, such reconfigurations are very much practical. And there are operating systems 

like Vx Works; it is an operating system quite popular and is used for embedded system 

design which from the GUI level it provides you with the GUI which allows you to 



select the components that you want to tie up together, you tie them up and you can 

reconfigure your system. So, there is a reconfiguration panel using which you can create 

your own version of Vx Works. So, Vx Works you can check at your leisure time look 

into the details of Vx Works and its features. So, that is a very popular operating system. 

Now, the other problem of base; now there is a downside of this also; downside of this is 

that whenever we are reconfiguring an operating system then that operating system must 

be tested thoroughly. 

(Refer Slide Time: 13:11) 

 

Testing and verification of the derived OS is very important, because when I created a 

reconfiguration I must test it thoroughly. Now on the other hand if I had developed only 

one dedicated operating system I would have tested that operating system over once. But 

since I am reconfiguring it time and again it every time whenever I am generating a 

reconfigured OS I need to verify it again. For example, typically in the open source real 

time operating system by Red Hat Linux has about 100 to 200 reconfiguration points. 

So, if they has different varieties, so think of the multiplicity of the different versions that 

can be generated from this- say one typical subversion is the e Cos operating system 

which is a version real time operating system from Red Hat Linux. Now it has got so 

many configuration points so it becomes very difficult to verify each and every one of 

them. That is another downside of reconfiguration approach. 



Now, we will look at particular diagram. Now let us quickly have a look at the tasks of a 

typical operating system. If I ask you what is an operating system: an operating system is 

a set of software packages which takes some help of hardware support of course, but it 

actually manages the resources efficiently so that we get a virtual environment. But that 

virtual environment may not be that important for real time or embedded systems, but in 

a way yes it gives us the compiler front end so you can talk in the; at through high 

languages etcetera. 

(Refer Slide Time: 16:03) 

 

But one of the major; see if I think of an operating system. The operating system has got 

at the core there is hardware; there is hardware at the core. And just above that hardware 

are the device drivers or kernel is a there are kernels and then there are device drivers, 

and whenever we make a call we make call to the kernel and the kernel selects the device 

drivers. So, the device drivers are not usually directly called by the user functions. 

The reason you know that if there will be a device which is being used by one particular 

process another process can throw it out or can invade in between and the results can be 

undesirable and everything that is. And above that there are compiler layers, database 

and all those things ultimately the application layer. They are different middle were here. 

So, that is a layered view of any operating system. 



(Refer Slide Time: 17:21) 

 

In the case of standard OS (Refer Time: 17:18) embedded operating system; I would like 

to draw this diagram. On this side is a standard OS where I can have d.d- means device 

drivers there are device drivers here and the operating system oversees that the OS is 

above that. And then on that the OS is actually what I draw is OS is a little goes beyond, 

because not only the device driver the OS takes care of some other thing. And then there 

is a there is a middle wax here I write m w. And above that there is a application layer 

clear. So, that is the standard OS variety. 

So, what happens here is that whenever I write any application that application that if it 

wants to access the device drivers it cannot bypass the operating system, he has to come 

to the operating system. Some application may bypass the middleware, but not the 

operating system; the operating system is spreading all through. 

On the other hand if I draw the embedded OS then I will draw it like this that I will have 

the kernel. Of course there, so kernel is also here. Now the device drivers are here, then 

in the same way I have got the middleware and the application layer. So, the difference 

this is the look of the embedded OS or real time OS or RT OS. Now here what happens 

when an application layer can directly access the kernel, can also directly access the 

device drivers. I think the middleware need not come upto this it can middleware I can 

also bypass the middleware. And an application program can directly access the device 

driver. 



So, there is not necessary that there has to be an intervention of the operating system all 

the time. Just to illustrate this point let us take the example of a PC based operating 

system windows. Say for example; there the keyboard, the mouse, the disk, the network, 

everything is under the control of the operating system. So, whenever we any process 

windows process for example, once to access the disk it has to go through the operating 

system layer as this shown here. 

On the other hand, embedded system being often single user systems or mostly for single 

purpose applications; it is possible that it will directly access the particular device or if 

disk or if flash memory is attached to that it will directly access that, it is not necessary 

that will go to through the operating system: number 1. Number 2: typically when we 

design the windows OS we are thinking of all possible applications such a general 

purpose platform we are, but we are no but no particular application actually requires all 

the devices except probably for real time system that is very important. 

One particular device is very very important that is timer. Except for timer there it will 

not be the case that all the processes are using the same set of devices. So, depending as 

the devices will vary it is not appropriate to all the time to go through the operating 

system to the device drivers. So, that is the major difference between operating system; I 

mean embedded operating system and other operating systems. 

(Refer Slide Time: 22:40) 

 



Another point is protection. Protection is a very important feature in any operating 

system; if we recall you will see that the program segments of the different processes are 

also protected by base limit registers. Similarly, their protection across the devices, 

protections against mutually I mean simultaneous access, critical sections all those things 

are there. But protection is optional in case of real time operating systems, because that is 

not because the embedded systems are mostly design single purpose; are mostly single 

purpose. 

Another very interesting thing that we found in general operating system was the 

privilege instructions; I hope all of you recall that. What are privilege instructions? 

Privilege instructions are those which can be executed only through the operating system 

mode or the kernel mode. So, whenever there is a set of instructions which are 

unprivileged, there is a set of instructions which are privileged. Whenever the system 

finds that a privileged instruction is being executed a system call is generated and you go 

to the operating system kernel level and execute that from that layer. The reason is this 

privilege instructions were introduced to ensure the protection that a particular device 

cannot be simultaneously accessed by more than one and all those things. But here 

privilege instructions are not required, because again we are designing it for mostly for 

single purpose. 

So see for example, there is a switch here and that switch is connected to the system. 

And directly the application and the system is running some application program where I 

can write load say reg 1 switch 1. So, a particular register reg 1 can be loaded with the 

value of this switch 0 or 1. In order to load this I need not take the help of the kernel or 

access that. That is in general true, but nowadays because of security reasons a lot of 

security issues are coming up with embedded systems specifically for the defense sector 

and very critical sectors, protections are also being thought off. How protections can be 

incorporated at the operating system level as well as the hardware level. 

That is a very recent phenomenon that we are all worried about, but in general a major 

difference of embedded operating systems with that of standard operating system is that 

protection was not that considered to be not that critical at that level. 



(Refer Slide Time: 26:40) 

 

Now another very vital thing is interrupts. Now interrupts always turned out to be point 

of unpredictability, because the very nature of interrupts is that they are asynchronous, 

they can come at any particular point of time. And we want the performance of 

embedded systems and real time systems to be predictable. One point is of course 

meeting the time constraints, but also we need the predictability. And that is how the 

interrupts have to be very carefully handled, but here in general operating system that 

can lead to in unpredictability, but how do we handle interrupts in embedded operating 

systems. 

So, we can allow any particular process to connect to the interrupt. Now when we come 

to an interrupt and we service it then that typically in normal operating systems what 

happens with the interrupts, whenever the interrupt comes we go to the kernel, but here 

we are not restricted to go through the kernel. Here we consider that embedded systems 

are tested, we have tested that I am assuming that so. If the interrupts come they are the 

interrupts of not to be restricted to the OS. See that the point that I want to make is, 

interrupts where it was mandatory that the interrupts will be processed through the kernel 

or the operating system in general systems. 

But in our case we need not restrict it to the operating system, a device can directly 

connect to the interrupt line of the processor because they are already tested and 

protections are not always required. And efficient control over the variety of devices is 



required. So, it is possible that particular software say or say particular device connects 

to the interrupt and corresponding to the interrupt I have got a software. And it can be 

directly done without going through the operating system. 

But, there is one problem here that if I want to have composition of actions against a 

particular software I want that one more than one software to be selected depending on 

different conditions that I cannot do here because I am directly utilizing the interrupting 

pin by the device here. So, the operating system is no longer required for this. 

Next is real time capability which is very important now. What is the real time system if 

we define, what is the real time operating system? The simplest possibility fine definition 

will be- a real time operating system is an operating system that supports the 

construction of the real time systems. And real time operating system is an operating 

system that supports construction of real time systems and so that real time behaviors can 

be delivered; that does not communicate much. 

(Refer Slide Time: 31:23) 

 

So what is required is number one: what are the requirements let me just put it as 

requirements of RT OS. One is predictability: the timing behavior must be predictable. 

For that I cannot disable interrupts for long; should not disable interrupts for long, why? 

If I disable I do not know when exactly the interrupt is coming. So, if I keep the span of 

interrupts disability long then I can miss the interrupts corresponding to my predictability 

of the behavior will be affected. 



Again another thing whenever we need this, contiguous allocation of the file is 

important. Why? You can think of many such other requirements- contiguous files are 

required because (Refer Time: 32:58) on disk. Typically the files are not stored 

contiguously. So, I do not have any apriori knowledge of where the things are 

accordingly the access times can vary, I do not have any predictability over the access 

time; one sector can be at some other point etcetera, etcetera. 

So, if I have contiguous files then I have got predictable head movements, that lead to 

predictable head movements- that is helping in predictability. The other constraint is the 

OS should manage the timing and scheduling of the works. Now this brings in to point 

the task dead line, if you just think of your typical usage in your PC’s you are whenever 

you compile a job or you want to execute a job you typically do not allocate any deadline 

with respect to that. Now for real time operating systems the deadline is very important 

and the operating system must do the scheduling in such a way that the timing and the 

deadline must be honored otherwise it would not be a real time behavior at all. So, that is 

important and also very resolution timings may often be required. The resolution of the 

times it cannot be say- I mean it is a quite predictable it will come within 1 hour that will 

not certainly work for most of the applications that is not allowed. 

So, these are the two major requirements that we see. Now we talk of time; now this is a 

thing that I often discuss why is it called real time. We always say it is a real time 

system, but have you ever thought why we call it a real time and what is a unreal time. 

So, what is time I mean how to represent time for that matter? 



(Refer Slide Time: 35:52) 

 

Time means one thing that can be the physical time which is a real number; which is a 

real number. But, there are relative times also. See for example, the clock ticks I say that 

this event must take place after 5 ticks; would take place here anywhere here and another 

job must take place after 3 ticks; so anywhere 1 2 3 here. Now this relative delay 

between these two, I have got no in claim, no idea about the absolute time that is there. 

That is typically whenever we; Now obviously whatever we do, we do in computers we 

do not in the real numbers is zone we do in the discrete time zone. 

In discrete zone also this is a relative time. However, small (Refer Time: 37:22) are high 

rather however high my resolution be still it is a discrete. So, that is relative time. 

Another time; so in a real time scenario I cannot say the job must end after 5 ticks. Now 

the 5 ticks can be 1 hour right, so that is not acceptable. What we are worried about is the 

real time or the absolute time that is the clock time. And there are two varieties of 

absolute time that is used is international atomic time. It is known as TAI, because the 

French name I cannot pronounce it properly temps atomic international or something like 

that time is something like whatever; time atomic international. 

The other thing is universal time coordinated, have you seen this timestamp anywhere? 

Where? You will see it in the emails also or UTC. You will see it in emails; you will see 

it in airline reservations everywhere. Now this international atomic time was purely 

based on some (Refer Time: 39:14) and it is not based on any artifacts, whereas this one 



is based on the astronomical standards since this one is based on astronomical standards 

and there is always some variation of the speed of astronomical movements, therefore it 

requires some corrections at times. 

So because of that there may be little variation in that and that has to be corrected, it is 

said that in January 1st 1958; these two clocks are synchronized, but after that this has 

changed a little bit. So, we will see how we some more requirements of real time systems 

in the next lecture. And after that we will move to some real time operating system 

scheduling problems. 


