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Lecture - 24 

Code Efficiency 

 

We were in the discussion of how we can make an embedded system power efficient 

more power efficient. 

(Refer Slide Time: 00:32) 

 

But besides power there are other efficiencies which we are interested in: one is it should 

be code size efficient and it should be also runtime efficient alright, besides being energy 

efficient. Now if I write down energy efficiency on the other side it should also be energy 

efficient. Now we have seen some measures of how to make it energy efficient by 

dynamic voltage scaling and dynamic power management and other measures right, 

some parallelisms. Now this parallelism will also make it runtime efficient and the run 

time efficiency will also make it energy efficient because energy is an integral of power 

over time. 

Similarly, there are independent reasons besides power; there are independent reasons of 

making an embedded software code size efficient. The reason is that if the code size is 

less then we need less memory to store it, so the area consequently will come down. But 

along with that as the memory increases the power also increases and more memory 



accesses will be required. And if we have a small piece of code lengthwise then also it 

will run in less time. So therefore, code size efficiency also has got relationship with 

energy efficiency. 

Now, but when we look at this code size efficiency; that means if I have a huge say- wide 

word length and I want to make some writings on that then there will be obviously more 

number of switching’s, because for each 1 to 0 there will be a switch. So, if I can make it 

narrow that is also advantageous. And over the time if I make the size less also this size 

is less the number of words in a program that will be accessed, then also we will need 

less number of memory accesses. Each memory access consumes power, because I have 

to float the address on the address bus get the data on the data bus all those things will 

come into play. 

So, one of the technique of code size efficiency is being shown here. 

(Refer Slide Time: 03:37) 

 

It is a compression technique; how we can we do the code compression. As is being 

shown here we have got the processor which is sending the address and getting back the 

data from the memory. Now, our objective is that we will have a compressor and 

decompressor which will send the address here and the address will be compressed, the 

code will be compressed here. And when we get it we will get it decompressed. The best 

way of one of the good examples of showing it is; if I can keep the codes compressed, if 



I can compress the code obviously my ROM size becomes less. As soon as my ROM size 

becomes less my address width becomes less. 

So, I can, but now if the microprocessor does not allow such compressions then once I 

fetch the compressed code then I have to decompress it and put it in the microprocessor 

itself. 
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A very nice example of this is in the ARM instruction set which I am repeatedly 

encouraging you to read, because it has got this very nice feature that is the thumb mode 

of operation; thumb mode of operation. In the thumb mode of operation we actually 

work with 16-bit instruction, whereas normally in non thumb or the expanded mode 

ARM can work with the 32-bit instruction. Now let us see that what is there in this 32-bit 

instruction. It is an example; and in this 32-bit operation here is the opcode part. This is 

the minor opcode, let us not consider that for the time being. We have got an opcode part. 

Now there is a provision of predicated execution let me write it down; predicated 

execution. What is a predicate? A predicate is a sort of expressing a condition; for 

example, it rains is a predicate, its hot is a predicate. So some situation, now we can 

specify something like that if the condition; if a particular condition holds do this. 

Similarly we will see that we will come back to this hash if later on, but if some 

condition do this. So, here there is some condition some predicate that if this predicate 



holds then do this. So, that is a conditional operation; conditional opcode that feature is 

there in thumb. 

Then you can have some minor opcode which is long, then you have got the registers 

from where source and destination and the large width of constants. Now most of the 

time we do not need this; so it has been seen in that mostly we can manage with just the 

major opcode and a smaller minor opcode may be consider this major minor do not go 

into the separation say a minor not code. Therefore, the opcode field becomes much less 

and here I am coming with a reduced instruction set, and the source and destinations are 

fine but the constants are much reduced; the constants we need not deal with such big 

constants. Thereby we can have 16-bit thumb instruction. For example, add to some 

register some constant. 

Now, if we are lucky then for a particular task we may be able to have all these 

instructions compressed to 16-bit instructions. In that case we would get 50 percent 

reduction of space. In actual practice it has been found that we can have around 65 to 70 

percent of original code size. Now another point is ARM performance with 8 to 16-bit, 

memory if I consider smaller memory is around 130 percent it goes up, whereas with 32-

bit larger memory its less. Therefore, if I can now the compiler; now the compiler can 

produce the codes in this thumb mode. In ARM as you study ARM you will see that 

there are ways of setting the mode to the thumb mode or the normal mode. If you have it 

in the thumb mode then it will take 16-bit instruction, you can also switch from the 

thumb mode to the extended mode. So, thereby using this I can reduce the size of the 

memory and the code size will be made more efficient. 

Student: (Refer Time: 10:01). 

That is I mean when you write the program you will have to have those conditions given 

or the compiler can also do that we will show that later. That just like a compiler 

directives that we do in hash define or all those in see, there are hash if statements that 

you can add. But later on it has been found that it is not very much encouraged, because 

too much usage of such predicative statements does not lead to good readability. So, a 

number of besides ARM the same approach has been taken up by other processors like 

LSI candidates and all those. And it requires; in order to do that it requires the support of 

the compiler and the assembler. 
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Another very interesting approach is the dictionary approach. 
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See there are; I mean if I consider a particular piece of code here and let me represent the 

bit strings in this code by some alphabets. So, a is a bit string say. So, my program is like 

a b each of them are bit strings alright c d but, I will not have distinct instructions also 

they may be that this same instruction has again at the machine level has appeared here, 

b has appeared here and may be again a has appeared here, may be c has appeared here 

in that way there can be repetitions, And may be another instruction e has appeared here 



and a has appeared here. Therefore, actually I have got here I can see that my code size is 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10- 10 words. 

But actually I have got only a, b, c, d, and e 5 words- 5 distinct words distributed all 

over. So, if I have just the addresses of the distinct. So, I have got 10 and see I have store 

the only these 5 in my memory: a which is quite wide, b, c, d and e these are the 

instructions that are there generated by the compiler. But my sequence will be nothing 

but the addresses to these 5. So, how many bits do I need here? Only 3 bits; so with the 3 

bit width in this example 3 bit width and ten such scenarios I can have access any one of 

those. So, essentially my program is a combination of these two, where I have made a 

reduction in this and here also I have made a reduction here. 

So, this is an encoding sort of this is the dictionary. So, if I just do some calculation here; 

suppose I can also show it in the form of this slide, say here. 
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So, what is happening here for d bit instruction; I have got d bits coming to the CPU 

ultimately because of this any of these instructions will be executed, and they are quite 

wide they are d bits. Now as I come to these d bits, but here what I have is my dictionary 

where I have got b bits; just like here I had 3 bits and the depth was 10. So, here also I 

have got a addresses a instructions each of 3 bits. So why is it b bits? B bit is actually 

producing the address to this. So, this I have already used instructions the instructions 

that have been used. 



So actually this is d bit, this is my what was this. So sorry, what happens is we get the b 

bits here which is much less than d bits that and that serves as an address and that 

instruction from here is chosen and fed to the CPU. Is it clear? I have got some 

instruction, that instruction is say these instructions again let us come here. Suppose I 

want to have the first instruction a; that means I am generating the address say 0 0 1 or 0 

0 0. 

So, 0 0 0 here is pointing to this address and this address has got d bits. So, this one is 

going to the CPU. Next instruction may be again say 0 0 1, so this one will go and that 

this instruction will be fed to the CPU. Therefore, what is happening is if you look at this 

uncompressed storage of d bit wide instruction would have required a number of 

instructions were there, like here this is the total number of instructions. So, if I had 

stored all of them together the number of bits I require is a into d; a number into d width. 

In compressed code each instruction pattern is stored only once. Therefore, actually I am 

needing a times b so much space and c times d because these are being stored only once, 

so c times d. Therefore, we hope that a times b plus c times b c times d a times b plus c 

times d would be much less than a times d. Thereby we can get the compression. That is 

the very nice way and this is used in Motorola 68000 and is called Nanoprogramming. 

Student: we can also use (Refer Time: 18:44).  

I will come to that later. So, with this now next we move to some other forms of; so these 

are the two approaches that we talked about for code size efficiency, now we will be 

talking about runtime efficiency. Now in runtime efficiency let us take for example the 

digital signal processing application; the DSP application. 



(Refer Slide Time: 19:24) 

 

Now, you know this figure is very familiar to us. 

(Refer Slide Time: 19:44) 

 

This figure is familiar to us we have encountered that number of times. So, we get a 

signal e t, we do the antialiasing get do sample and hold and that signal is converted A to 

D and it is processed. Now we are concerned about this processing today. We have 

already discussed about all these phases earlier. So, regarding processing we are getting 

some input from the A to D converter. And typically we want to generate a signal at a 



particular time say sampling point is t s at some at t s point I have got some value. At this 

t s I have got some value and I want to find the value actual value I mean x s for that. 

And how do we compute that? We compute this at this point by one very common 

operation in the filtering is we take all the earlier values of this sample of this variable 

and multiply that with some coefficient. So, it is a multiply and accumulate. What do I 

multiply, I multiply a current coefficient with the W values these values which are 

coming from the A to D converter for k equal to 0 to k n minus 1. So, I am going back all 

the previous samples I am taking and I am making a multiply and add with respect to 

that. 
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Now as I do this, we do this using a digital signal processor. So, here we see a typical 

digital signal processor which is ADSP 2100. Now let us look at this piece of code very 

carefully what we are trying to do before that let me quickly come to this architecture of 

this DSP chip we have got registers MX MY are your registers we have got MR as 

another register MF as another register. On the other side we have got AX and AY and 

there are two arrays A and W in these two memories. 

Because, here we are having the W values all stored in an array and the coefficients are 

stored in another array. So, these two arrays are already stored in the memory. We have 

got an address generation unit this is very important, we will come to this a little later 

where the address is being generated from this unit. There is some address registers. Now 



let us look at what we are doing. Again every time look at this, first of all keep in mind 

that we want to achieve runtime efficiency. And what do we want to achieve we want to 

achieve this, so let us start with this point. 

In the register MX I am putting from the W array which is here the current element Sth 

element alright, we are starting with that. And in y we put from the array a the first 

element we start with that. Sth element means what here the last one that we have got 

right. Now we do in a loop. Now this is the initialization let us start with this we did this 

and then we do MR gets MR plus MX times MY. So, what is there in MY A 0 and what 

is there in MX W S. So, A 0 W S minus 0 k is starting from 0, so I am taking W S fine. 

Then and I am adding it to MR. Then this MX is getting the next the earlier value. Earlier 

value will get from some address register A 2 W S minus 1. Now look at these address 

registers A 1 and A 2 are separate here, they are here in this address bank address register 

bank. And then I increment A 1 and decrement A 2 clear. 

So, there are two arrays all of you are clear about this. I have got two arrays one is from 

W and one is for A; and W I am going this way and A I am going this way. And I 

initialize this sum there is an adder and what is this is an adder this is an adder also this is 

a multiplier sorry, this is a multiplier and this is an adder. So, all these are hardware so 

that the multiplication and this addition this multiplication is being taking place here and 

this addition is taking place in the same cycle. We are given a MAC instruction multiply 

accumulates. So, we are getting this and the current result is MR. 

Now consequently what is happening? And we are decrementing this now look at the 

initialization. So, all these things are being done as if in a pipeline and we are initializing 

this pipeline by making this initial sum to be 0; A 1 to be 1 because I am starting with A 0 

A 1 to be 0 and then coming back here. So, then 1 is there and this is S minus 1 I will 

started already with S. So, this thing goes on goes on and it ultimately I get the sum here. 

So, the point to stress is this, I want to have since look at this architecture. The entire 

thing, forget about this A 1 plus plus and A 2 minus minus for the time being, let us not 

consider that. Besides that all the other things in this loop can be done in one cycle, 

because there are parallel paths coming here and this entire operation is being done in 

one cycle. So, from here to here I can get the entire thing done in one cycle. 



All these things are taking place parallely. This MX getting W A 2 is coming through this 

path while this multiplication is going on. But this address generation, now I am saying I 

will show how later that while this computation is being done for the current values of 

A’s A 1 and A 2 parallely the A 1 and A 2 are being modified parallely in the same cycle, 

because I have got a separate address generation unit. 
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Therefore, this was actually if I write in this yellow box this was my entire body of the 

loop, this entire thing this entire thing initialization [FL]. Leaving aside the initialization 

if I look at this part is all in this. This part I will come in a moment. Now all these things 

can be done at the same time because I have got parallel paths. I can do this 

multiplication I can do this. So, this entire thing can be done in one cycle. 

Now, the question arises; so what? I have got to carry out this loop and for that I have to 

check for this condition. Now for that again special hardware arrangements or special 

instructions it can be done in two different ways. This part is handled, this looping is 

handled by a thing called zero-overhead loop. What happens is for the; what do we do 

usually in our C programming, what did you do? We carry out the body of the code and 

then go and check the loop. Now in zero-overhead loop what we do while the body of 

the code is being executed parallely the loop condition is being checked that whether the 

loop condition will be executed. 



Now here again I can refer to the predicated scenario, I can make this whole body to 

appear as something like; suppose I do in this way. Nnow if this one is carried out 

parallely along with the loop the earlier iteration of the loop and I am checking this 

parallely then I am not spending any extra time for this comparison. Now this can be 

done in hardware or this can be done using instruction prefix or by instruction prefix. So, 

this is an instruction and I am prefixing that. So, these are some very important novelties 

that came into the embedded processing in order to add to the runtime efficiency. 

Now, the point that I have not yet addressed is this how is it that the address is generated 

parallely. For that if I go back here I am showing this address generation unit; the address 

generation unit is being shown here. 

(Refer Slide Time: 31:40) 

 

So this address generation unit is in this way. 
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Let me show this first in this form let us look at this. This is the address generation unit 

where I have got the address registers; it may be 4 5, what does it mean? That 4 or 5 

different arrays I can these address generation registers are actually serving as the indices 

the index of the array. 

(Refer Slide Time: 32:20) 

 

There is an array; I will store all arrays, array is a very important component of any DSP 

processing and we will see later that we do not want linked lists to be used there. 



So, I have got an array, so it may be W 1, W 2 where there are. And say this is an array 

W this an array s all arrays I am showing of the same size, but it may be another array of 

smaller size also. Suppose this is s this is m; there are three different arrays. And I am 

doing some operation with the indices here what we call say I, j, k. For each of these 

indices I am having an address register. May e A 0 is pointing to this A 1 is pointing to 

this, A 2 is pointing to this. Now when I carry out the operation suppose I am taking this 

element and multiplying with this element and may be storing in this element. 

Now after that I have to increment all of them; A 0 plus plus A 1 plus plus A 2 plus plus 

that is taking time. Now address generation unit what it will do along with this operation 

it will either increment or decrement these indices so that that is automatically done. 

How is that done? This operation now it will be clear I have got these A 0 A 1’s here they 

are pointing to the data memory; data memory are these wherever these arrays are. And I 

have got an adder with a multiplexer. 

So, I have already got a 1 fed I will have some control for plus or minus auto increment 

or auto decrement. And I can along with the instruction I can increment this, while the 

instruction has been fetched the instruction is either A 1 plus plus or maybe A 1 plus m. If 

it be A 1 plus m then I will have some modified registers, you mean do you understand 

no; I mean I can increment it by one auto increment or I can shift it with a I mean with a 

offset, so what would be that offset value. That can come from a register memory or 

memory register that I add with a A 0 or whatever some value x so that is coming from 

the register. 

So, either I can depend on the instruction I can either select this or I select 1. Whatever is 

coming I add either of them and that is coming to this point and it is automatically added. 

And so it takes effectively 0 time, if this can be done in parallel with the main data path; 

main data path was where I was doing that loop thing. A plus minus 1 also takes 0 time, 

A plus minus m also takes 0 time. And it minimizes the load immediate; load immediates 

I need not that is automatically coming. So, that is a nice way of optimizing this. 

So summarizing, the DSP processors are specially tuned for such runtime efficiency not 

that others are not tuned but DS, but I am just showing how DSP processors are tuned 

that is using this address generation registers and also with heterogeneous registers, all 

these registers are not doing the same function. Here is an operational unit which is 



doing multiply accumulate in the same cycle. So, that altogether allows us to have a very 

faster operation. 

Now we will break for a while. 


