
Embedded Systems Design

Prof. Anupam Basu

 Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 01

Introduction

Good morning. And welcome to you all to this course on Embedded Systems.

(Refer Slide Time: 00:27)

We will try to understand in today’s lecture which is the first lecture, how embedded

systems differ or how embedded system poses some additional constraints over the other

general purpose systems that we have encountered in our learning process till now. Now

embedded system, what is an embedded system if we ask this question what is an

embedded system? The possible answer is an embedded system is a system where a

microcontroller based or microprocessor based programmable system is embedded in a

larger system. So, you will have a larger system we can be; this is the larger system in

which there is a microcontroller based or programmable system embedded always it may

not be programmable by the way, it may be also hardware programmed.

So there is some processor embedded inside this, which interacts with this larger system

at different level. So, this system actually takes inputs from the world and by the world I

mean this environment with the world for this embedded system. So, it takes input from

this world processes the information, sends it back to the world. It can come from

different points of this larger system and the after computation the responses can go to

again different points of the system.

The points which are affected because you see the larger system can have many things

everything may not be controlled by the embedded system everything cannot be sensed

by the embedded system. So, the parts which are sensed acted upon and actuated upon

are known as often known as a sphere of control. So, might be there is a sphere of

control around this embedded this embedded system, within this larger system that is

being affected by this embedded system.

Now, typical examples of embedded systems now you can think of embedded systems

are everywhere; everywhere you can say if you take your mobile phone it has got many

communication systems, but also there are processors even earlier if you take the printer:

inkjet printers, colour printers there also the controllers are there even. If I go even

earlier, there are some discs systems where intelligent controls are embedded printers I

have already said.

So, there are there have systems been embedded inside larger systems for longer time,

nowadays we find intelligent washing machines where depending on the volume of the

clothes, the extent of dirt in the clothes, the gyration, the speed at which the there will be

centrifuged or how much detergents will be required all are controlled automatically;

how is it controlled automatically? Using some embedded systems.

Again if we go to more advanced things, now most of the modern cars are coming with

not one embedded system, but multiple embedded systems, which some are taking care

of controlling the brakes some are taking care of the cruise control, some are taking care

of the locking system. So, there are number of embedded systems impregnated inside the

largest system that is the car. If we look at the airplanes, most of the airplanes now are

said to be not so much dependent on the pilot’s. So, there is a set of embedded controllers

inside that which can negotiate with the environment and those are also embedded

systems. In warfare where we find the when we want to have some rocket launchers,

there also embedded systems are there which are taking signals from here. So, the list

gradually becomes endless nowadays.

Now, if you look at, now this is also known as sometimes a variant of such embedded

systems are known as cyber physical systems, this term is becoming popular day by day,

where the cyber part means the computer in interacting with a physical environment. So,

the physical environment can be a road on which a car is moving right the road will have

different frictions at different a point that is the physical reality and now I have got a car,

which has got a controller which will keep the speed fixed at a particular set level.

Now, from your school level knowledge of physics, you know that in order to keep the

speed constant when the friction increases you have to apply more force and the reverse

when the friction goes down in order to keep the same speed. Now that the physical

reality is the road, the physical reality is the condition of the tires of the car and the

controller is within the car this is one sort of thing one sort example of cyber physical

system this can be farther extended nowadays to the term which many of you have heard

which is internet of things I o T as it is told. I o T is nothing but a set of systems spread

around maybe distant, each of them have got their embedded controllers, embedded

sensors everything and they are communicating over the internet and one system can

communicate and actuate another one at a distance. Therefore, everything gets connected

through the communication of a set of embedded systems.

(Refer Slide Time: 08:34)

Now, coming back to embedded systems proper, if we think of an embedded system it

will consist of say a microcontroller based system or processing system. Let me call it

the processing system, which usually are microcontroller or microprocessor based if they

are programmable and on another side we have got the sensors, which interacts with the

world and provides the data to the processing unit and there are actuators. Now these

actuators are actually affecting the physical world or the largest system, let me call it the

other system whatever that the other system might be alright and the sensor is sensing

some variables from this other system and feeding it to the processing unit and

depending on whatever actions are to be taken there the actuator is actuating it.

Now, in between I have missed out certain things intentionally that is it can the sensors

are sensing the data, which are coming from the other system which is a physical world,

which is mostly analogue mostly analogue right? If it an analog systems. Therefore, the

there can be 2 things; the sensor can directly sense the data in the digital form, otherwise

if it does not do that then here we need a layer of interface which is the analogue to

digital converter, because this processing system is a digital machine. Similarly we have

to give the data to the physical environment mostly analogue may or may not be, but if it

be an analogue system then we need here a D to A converter, digital to analogue

converter. Now often the actuators can be direct to digital and can provide the control

that will see some examples later.

So, this is the overall environment. In order to learn embedded systems, we have to learn

some; we have to have some knowledge about the sensors, what sensors, how do you

specify sensors may be many of you know how analogue to digital converters or digital

to analogue converters are working we will try to brush up on that again also again. And

most important part is this processing unit, where we will see that different types of

processing’s can be involved; now you one can ask the question that is in a typical

architecture of a computer system, we also have got the input device, the CPU and the

memory, the processing device processing block and the output device. So, where does it

differ from a general purpose system?

(Refer Slide Time: 13:07)

So, how does it differ from the general purpose system? So, general purpose system

versus embedded systems; usually the embedded systems are one embedded system is

for one purpose. So, single purpose or single application that is point number 1, the other

point is the embedded systems is severely usually what happens here, what do you mean

by this? A single application program is repeatedly run, whenever for a particular say for

example, let me give the example of an answering machine, telephone answering

machine, it has got a fixed task that when the call will come after 5 or 7 rings, if the

receiver is not picked up see all these things are to be sensed that the receiver has not

been picked up, then the answering machine goes on after the delay gives up, after plays

a message and gives a beep, after recording for a particular delay it cuts it off all those

things.

Now, this is the fixed this program, it has been written once and have been put in an

embedded processor, which has been put in the answering machine or the telephone

system. So, that program is repeatedly working.

The other option is other distinguishing feature is; it is very tightly constrained compared

to the general purposes system. General purpose system is not single part single purpose;

it will be multiple purposes it can be used for different purpose now is tightly constrained

in terms of what? It must be low cost, the cost cannot be exorbitant like a general

purpose server right, it should be low power mostly we will like to run this on battery it

should be portable, it should be sometimes it must be real time. In general it should be

fast, it should be fast all the time, but sometimes it should be hard real time I will come

to that what it means. So, these are some of the constraints that are specific to embedded

systems, but not so much for general purposes.

On the other hand general purpose systems are more powerful in the sense, that it can do

many more things it is not single purpose, is not constrained by these things, it consumes

more power usually runs from the direct electric supply with some battery backups and

all those. So, that is the differentiation between general purpose systems and embedded

systems, most important thing is its predefined what I am going to run on an embedded

system is predefined application. In some cases we will find that multiple applications

are running on an embedded system, but those are also predefined 3 or 4 it cannot be just

like a general purpose system that you can go on adding to this.

(Refer Slide Time: 18:00)

I differentiate between another thing that since right now I have said real time systems,

let me also differentiate between RTS and embedded systems, what are real time system

real time systems? Real time systems are systems it can be of 2 types: hard real time

systems and soft real systems; hard RTS and soft RTS. Now hard real time systems have

got stringent time constraints, the time constraint that is given is very stringent. Now this

stringent time constraint must be adhered to, must be respected. If this time constraint is

violated then violations will lead to catastrophes.

For example you have to land within a plane has to land within maybe 1 minute alright?

Now if it exceeds 1 minute then it can crash; take another example say a nuclear power

plant or some power plant some thermal plant, where you find that the temperature has

gone very high beyond the safety limit and you have to start the coolant and put the

power put the shut off the plant within some specific time and suppose your system that

is controlling it is sluggish enough that it does not respect that time it does the thing, but

does it much later by that time the situation has blown off right.

So, that is not allowed in hard real time systems, why we call it real time systems?

Because this time constraints are specified in terms of real time, real time means what? 1

second 2 second by this clock, this is the real time clock time is ticking. On the other end

what is the other sort of time that we discuss about? We discuss about so many cycles,

suppose I say that the light must be switched off after 50 cycles, visa vis I say that the

light must be switched off within 1 second or 1 minute or 1 second what is the

difference? If the cycle clock is 50 hertz then they are equivalent, because I have said

after 50. So, it will be fine, but if the clock is slow then 50 cycles will come after 2

minutes right. So, that is the basic difference between real time systems and normal I

mean that typical computer systems that we talk of.

On the other hand hard real time soft real time systems, if we violate the time constraint

then we the quality of service gets reduced quality of service reduced, but no catastrophe

happens no catastrophe happens. Now, embedded systems can be real time systems or

may not be real time systems. It may be a real time system or may not be a real time

system again on the other hand similarly real time systems maybe embedded usually real

time systems are embedded, but real time systems can also be same server based system.

So, these 2 are not equivalent that all embedded system should be real time systems that

should be kept in mind.

(Refer Slide Time: 23:14)

Next we will come to a slide that will give you an example of an embedded system here.

See this is an example of an embedded system which is a digital camera it has been taken

from the book embedded system design, a unified hardware software introduction by

Frank Vahid and Gavages it is Wiley publication.

So, here you see typical digital camera, what do we have inside. Now first of all it is a

single functioned its single functioned its only one function, that is been done that is

photograph is taken and stored right. It is tightly constrained how it is low cost,

otherwise people will not buy it, low power it is small portable must be portable and

should be fast.

Now we do not call it real time systems, if the picture is captured a little slow no

catastrophe will happen right it is reactive and real time I will explain what is a reactive

system and real time system, but it is a reactive system and real time only to a small

extent, because if you take the image it is the soft real time or hard real time? It is the

soft real time; obviously, because if it is very slow then probably you will not buy this,

but no catastrophe will happen.

Now, what is there? You can see the lens which is capturing the world through a CCD

charged couple device, there is an A 2 D converter which is converting it there is a

charged couple device pre processor then here you see one thing that I in the slide that I

was showing about the embedded system architecture also you can see that there is a

communication channel going on also this, that I did not explicitly mention, but

communication is another very important part of this entire embedded system ecosystem.

So, here you see that through the bus we are communicating the CCD processor data is

going everywhere and there is a microcontroller there is a JPEG codec, which is doing

the conversion and completion and also there is a DMA controller, memory controller,

bus interface, UART is a serial parallel to serial converter and there is an LCD control.

So, there are so many components inside an embedded system besides a processor. Now

you see how many processor do you see here? You can see a microcontroller is a

processor here, you can see a CCD pre processor, Pixel core processor, here is another

JPEG processor, multiplier you can say that this is not a processor it is just a multiplier,

but that is also doing some processor. So, there is many processors communicating now

the key point is that some of these can be hardware can be implemented in hardware,

some of them can be implemented in software will see this part.

(Refer Slide Time: 26:52)

Next what are the design challenges, before I come to the design challenges let me make

another system level classification, one is reactive systems versus transformational

systems. Reactive systems are those which react to an event that occurs for example,

there is a system like a camera it does not off itself work whenever you create an event

you there is an input and in that input you put a pulse like suppose you are pressing the

shutter, then only it starts work.

Similarly, it could be that this is continuously it is keeping watch its active another

system, but whenever there is an alarm situation then only it starts working and

immediately it sends the response and usually such reactive systems in many cases such

reactive systems react to an event, which is an urgent event, and therefore in many cases

they are real time systems.

On the other hand; so these are working on external events, on the other side there can be

transformational system for example, image processing systems. You get a set of images,

you get an image and you process it in image processing you do a lot of things, you do

noise removal, you do segmentation right and you do go on doing all these things

different activities that you do right? Now that you are taking a data some data is coming

in, and that data is being transformed through stages, not in the event of any not in the

event of some explicit event asking for service. Here if we go to this diagram, you can

find that there will be some reactive components also here and some will be

transformational component so often the system is a mix of this.

Now, embedded systems have got a number of design challenges, a major design

challenges the cost obviously.

(Refer Slide Time: 30:10)

Cost is a very important aspect now; the cost has got 2 components: one is the NRE cost,

NRE cost means non recurring engineering cost; we will have to incur some cost for that.

So, here are the challenges, the challenges are mostly the challenges and optimizing on

different aspects. What is the cost I mean how much time how much how much money I

spend in order to do this development and that is also dependent on the time, this is also

dependent on how much time I will give size of the device the system, the power, power

will come back will come back to power time and again power is a very very important

factor in embedded system design nowadays. The performance and flexibility what do I

mean by performance? Performance means how in regard to time, how fast does it work?

For example and it can be latency, it can be throughput, what is the difference between

these 2? Latency means the time to take a task let me give an example suppose the

camera that we just now saw, takes 0.25 seconds to take a picture. Now I have got a

camera some camera A. Therefore, can take 4 pictures per second right because I have

designed it in such a way that it can take a picture within 0.25 seconds, process it do

everything.

Now so, its throughput is also 4 pictures per second; latency is 0.25 this is latency, and

this is the throughput. Now there can be another camera B which has got the same

latency, but it can take 8 pictures per second, how is it possible?

(Refer Slide Time: 33:35)

So, this is the throughput and this is the latency, I said the camera B has got the latency

of; camera B also has the latency of 0.25 seconds right. So, the camera B takes a picture,

in order to take a picture it also requires 0.25 second just as camera A did, but camera B

had 2 threads running to parallel processing. Therefore, while one is being processed it

could be pipelined, one is being processed another is being fetched. In that way I can

enhance the throughput, but the latency is same, I hope that differentiation between

throughput and latency is clear. So, that is performance.

The flexibility is a very another important thing and flex if I bring a product, which has

got the flexibility of adapting to. Suppose now I have got I bring a phone, which can

work in 4 g as well as 5 g, visa vis there is a phone, which is coming in 4 g or only in 5

g. Now there is a feature differentiation, my phone which I am bringing now can work in

4 g and 5 g verses your phone which works only in 5 g. So, I have got a flexibility, by

that I can greater handover the market that is one. Another point is that if I have got the

flexibility, I bring the product in the market and then I find that there are some more

demands coming out from the user, can I adapt to those demands? If my system is

flexible, I can add new features to the system and make it more flexible. So, these are

some of the challenges that we have to face.

(Refer Slide Time: 35:52)

Now in order to complete the discussion today, we will go back to another very

important issue. The design matrix are all these the energy cost and all those things,

energy cost you should try to bring down, power is another now each of these constraints

are competing among themselves, they are competing among themselves. Therefore we

have to always find an optimization right there is no unique solution.

(Refer Slide Time: 36:32)

Now, let us look at this diagram, what I am talking of now which is a very vital factor in

embedded system design is hardware, software, trade off and that is why embedded

system design also goes by the name, the task also goes by the name, hardware, software

co design both of these things are designed hand in hand. Now let us look at this picture

here in the digital camera chip we have got so many functions to achieve, now this CCD

processor pre processor, I can map it to a hardware the JPEG codec I can map it to a

hardware, or this JPEG codec had the option that I run a software code on the

microcontroller for having the compression.

So, I have got an option of doing this compression in hardware or in software, similarly

the pixel coprocessor could be done in a software or could be done in a hardware, what is

the advantage if I do it in a hardware? It will be faster, what is the disadvantage of doing

it in the hardware? The cost the area it will become more, it will become heavy all those

factors will come into play. What is the advantage of making it in software? It will be

flexible, I can tune it further, but what is the disadvantage of doing it in software? It will

be a little slower and there will be the of course, I will need a microcontroller and power

consumption; power consumption will come will deal with that separately.

Similarly, this, but some of the things that for example, there a bass interface that is

hardware. So, some are fixed assigned destined to be hardware, some are destined to be

software, but some can be implemented by either hardware or software and the designers

challenge is to really decide on which one should be done in hardware and which one

should be done in software. So, we will take it up from this point, we conclude today.

