
Natural Language Processing

Prof. Amrith Krishna

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 59

Tutorial

Hello everyone, welcome to the tutorial section for the NLP course. So, today we will be

looking into how to use or how to build a classifier for one of the most popular task in

NLP sentiment analysis and we will be looking to how we create features and how we

can build a supervised machine learning classifier for the purpose of sentiment analysis.

(Refer Slide Time: 00:24)

So, we will essentially look into how we can build a Naive Bayes classifier and after that

we will just give you pointers towards how to build other classifiers. The notebook

provided to you will have code snippets for building other type of classifiers, I will not be

discussing it here.

So, sentiment analysis is essentially a task where you are given a document which can be

a sentence or a set of sentences and you are given with and you have to label it whether it

belongs to a positive sentiment or a negative sentiment. This is the most simplistic

representation or a task that we can think of sentiment analysis. Of course, as per the

demands, this complexity of the task can be increased or like depending on the

requirement from the customer or the user, there might be other levels of sentiment that

might be applied here. So, here what we will be doing is that we will be taking about

5000 documents which are 5000 movie reviews and we see and we are already provided

with the labels for those 5000 documents.

Here we can find about 2500 negative reviews and positive reviews about different films.

(Refer Slide Time: 02:05)

Now once this are provided, what we have to do is that we have to build a supervise

classifier where we tag the positives as 1 and the negatives as 0 and then we build the

classifier. So, here each document is your input and your models have to predict the

sentiment of a new document when provided in the similar representation. So, we have to

first convert each of those documents which is a training document in your vectorial

representation. So, for that purpose, what we do here is that we take each positive and

negative documents into separate data structure which is basically a list.

(Refer Slide Time: 03:28)

And once we do that what we do is that we count the number of individual words that is

appearing in each of these sets.

We can find that since each document here is given as a separate file, we use the inbuilt

OS library to traverse through each of the file given in the folder pos or the positive and

then we append the content to a particular list. Once we do that we define a function

called count text which basically looks for individual words in each of the document and

also it keeps a track of the count or the number of time it is appearing.

(Refer Slide Time: 04:39)

We can just have a look of how the variable negative counts looks like, if you see here

for negative the words pineapple, consider, daring, etcetera are appearing in different

counts. So, we can find western appearing 20 times, screening appear 22 times, wooden

appears 42 times and so on. So, here we have not done any pre processing for as it is so,

far illustrative purposes. So, in this corpus may be the daring might be at separate word

than this word because it has some extra symbols in it. These all need to be taken care

when we go for a practical application. We do not do any case folding or any removal of

other special symbols, but all these needs to be taken care.

So, once we have this separate dictionaries, now what we do is do here is that we just

find out, how often a word is appearing in both positive and negative context. It is often

possible that some of these words can appear in positive and negative context. So, the

very basic idea here is that if a word appears more or less like equally in both the sets,

they does not have much value, if a word words presents in one of these sets say positive

context is queued with compared to what is happening with the negative set then that is

more likely a positive sentiment word. If a word is more likely to belong to a negative set

it is more likely a negative sentiment word, if it is more likely to belong to a positive set,

it is a positive word.

(Refer Slide Time: 06:26)

We have the description here where we what we do is that we would find the total

number of times a particular word that occur in the corpus and we just find the

probability of it with its total count.

(Refer Slide Time: 06:50)

If we see what exactly is prob positive. So, what we do here is that we took to represent

the notion of cuteness or more likelihood of something being occurring in one set than

the other, we convert them to a suitable probability distribution and what we find here is

that the positive review count and negative review count. They are more or less equal

they are like roughly 2500 a little bit here and there, but roughly they are equal. So, yes

we can find what is the respective count.

We can find there is a slight difference of 300 also between both of them, but we

essentially have more or less 2500 documents in each of those classes. Now so we can

roughly say that they are like near to 0.5 in probability each, there is the number of

documents that has prob positive sentiment and negative sentiment and are roughly half

once we have that what remains is to find the individual probability of each word that is

present. So, in order to do that, let us see, how this work, how this is calculated? So, print

word and we will also find count, it seems to have a minor error in our work. So,

indentation is something that is pretty important in python.

(Refer Slide Time: 11:41)

Here what we can find is that we can find the probability of each word belonging to a

particular class. So, the function is defined in such a way that we first calculate all the

prob, all the probability, all the words probability of belonging to the negative class then

we find the probability of each of the word in the same document to belong to the

positive class. So, suppose our new sentence is good, nice, well and done, we will

calculate first probability of those words belonging to the negative counts and for the

negative probability set and then to the positive probability set.

If we see here, so done, good, well and nice, first when they are given to the negatives,

we are getting a probability of 3.003 into 10 to the power of minus 6 as compared to 8.34

into 10 to the power minus 6, similarly for other values also like good negative has a

probability of appearing with 4.5 into 10 to the power minus 5 where is to good in

positive is higher than that. So, once we have this individual scores it take the product of

this course as shown here and we find that the positive score for this document which

convince this 4 words is 8.06 into the power 10 power minus 8 as compared to the

negative score which is much lesser than this. So, we can say that overall sentiment for

this review is positive.

Now let us feed for another sentence where the sentence is the movie was junk useless

good for nothing sheer waste of time and money. So, it does not take much to think that

what will be the label for this document, but what we have to see is that whether the

system is able to capture that see if you find the sentiment of this particular document is

negative and we can find that this particular document as a very huge difference in its

positive score and negative score. We can find that the value here is in the order of 10 to

the power minus 44 while the positive score is somewhere at in the value of 10 to the

power of minus 47.

So, this means this particular document is labeled as negative and the system is able to

capture both the cases of positive and negative documents are released for these 2 test

document cases. So, this is how we internally calculate the values.

(Refer Slide Time: 15:01)

Now, how we can use a Naive Bayes; Naive Bayes classifier for a production ready

purpose. So, here what we do is that we use the Scikit learn library they have a Naive

Bayes classifier already implemented what we will do is that we will use this classifier to

do the same task that is shown here, but we test it on a larger number of test data. So,

while giving he input to the system we have to again convert it into a suitable vectorial

representation that this particular library understands. So, we use the count vector is a

function which basically represents a document in terms of the number of times a

particular word is appearing in that document and it by default removes the stop words or

it has other possible functions as well.

This particular function provides a whole range of facilities that makes our job much

easier like we can often use different multi word patterns for multi word ranges like for

example, if you have a word like hot dog though they are essentially separated by space,

hot dog does not, when we take the individual words hot or dog, it does not capture the

notion that is represented by hot dog. So, it is assumed to be a multi word expression. So,

we will be; so these kind of Engram range functionality will help you to capture those

multi word expressions and of course, we have to use some filtering criteria to remove

the unnecessary ones and we convert both the training vectors and the test vectors into

this vectorial representation. So, there is again a small difference in the function called

that we are doing fit transform and transform. So, fit and transform are actually two

different methods and this Scikit learn function fit transform convert basically performs

both the functions together. So, in fit we have to first build the vocabulary or the unique

word.

(Refer Slide Time: 16:48)

And then we convert each document to fit into any of to that vocabulary space in test

features if a new word is appearing or that is called as out of vocabulary word that is

ignored and only those counts are retained which are originally there in the vocabulary.

Once we have that we run this classifier and we also calculate the area under curve that

gives us that basically give tells us about the false positive weight and the true positive

weight, so for a binary classifier like this information helps us in identifying the

performance of the classifier.

(Refer Slide Time: 18:14)

(Refer Slide Time: 18:25)

So, Scikit learn provides a host of classifiers it includes classifiers like SVM with

multiple Kernal options or a simple classifiers like random forests. So, you can refer to

any of the machine learning lectures to have an understanding of these classifiers for a

quick check of what are the different classifiers that is provided.

(Refer Slide Time: 18:40)

(Refer Slide Time: 18:40)

You can have a look into the scikit learns official documentation. So, the link is already

provided here. So, here the classifier essentially provides different classifiers and they

show on one data set how each of this classifier is performing you can have a look into

this in addition.

(Refer Slide Time: 19:09)

You can have a look into this quick scikit that will help you to find the relevant classifier

or the estimator that you should be using. So, this scikit essentially provides all possible

or it basically summarizes what are the different estimators that is available in scikit and

you can see that when we do a supervise approach we should be either doing a

classification or when we have where we have to classify or we have to predict a

particular label.

In this case we were doing a classification where we predicting that whether something

belongs to positive or negative. Suppose you wanted to predict the degree of positiveness

or negativeness in a particular document you might have to model the same task as a

regression task where it has a suite of library or suite of methods available here. In case

of working with un supervised data like plastering or those kind of things that we have

done in words disambiguation you might have to consider one of these clustering options

or you can use the topic model that we have discussed in the previous tutorial.

This essentially summarizes the class the supervised approaches for building a sentiment

analysis tool.

(Refer Slide Time: 21:00)

You can also look into other standard sentiment analysis tools like the Stanford sentiment

analyzer see if we give one of our sentences that we have used here for testing.

(Refer Slide Time: 21:37)

Here what we can find is that this again shows more or less negative sentiments to the

classic the sentence. So, it basically shows each word to be either very negative or

negative and very few words to have a positive impact. So, that will be all for this

tutorial, please try out other classifiers as well.

Thank you.

