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Hello everyone, welcome to the tutorial section for the NLP course. So, today we will be 

looking into how to use or how to build a classifier for one of the most popular task in 

NLP sentiment analysis and we will be looking to how we create features and how we 

can build a supervised machine learning classifier for the purpose of sentiment analysis. 
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So, we will essentially look into how we can build a Naive Bayes classifier and after that 

we will just give you pointers towards how to build other classifiers. The notebook 

provided to you will have code snippets for building other type of classifiers, I will not be 

discussing it here.  

So, sentiment analysis is essentially a task where you are given a document which can be 

a sentence or a set of sentences and you are given with and you have to label it whether it 



belongs to a positive sentiment or a negative sentiment. This is the most simplistic 

representation or a task that we can think of sentiment analysis. Of course, as per the 

demands, this complexity of the task can be increased or like depending on the 

requirement from the customer or the user, there might be other levels of sentiment that 

might be applied here. So, here what we will be doing is that we will be taking about 

5000 documents which are 5000 movie reviews and we see and we are already provided 

with the labels for those 5000 documents. 

Here we can find about 2500 negative reviews and positive reviews about different films. 
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Now once this are provided, what we have to do is that we have to build a supervise 

classifier where we tag the positives as 1 and the negatives as 0 and then we build the 

classifier. So, here each document is your input and your models have to predict the 

sentiment of a new document when provided in the similar representation. So, we have to 

first convert each of those documents which is a training document in your vectorial 

representation. So, for that purpose, what we do here is that we take each positive and 

negative documents into separate data structure which is basically a list. 
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And once we do that what we do is that we count the number of individual words that is 

appearing in each of these sets. 

We can find that since each document here is given as a separate file, we use the inbuilt 

OS library to traverse through each of the file given in the folder pos or the positive and 

then we append the content to a particular list. Once we do that we define a function 

called count text which basically looks for individual words in each of the document and 

also it keeps a track of the count or the number of time it is appearing. 
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We can just have a look of how the variable negative counts looks like, if you see here 

for negative the words pineapple, consider, daring, etcetera are appearing in different 

counts. So, we can find western appearing 20 times, screening appear 22 times, wooden 

appears 42 times and so on. So, here we have not done any pre processing for as it is so, 

far illustrative purposes. So, in this corpus may be the daring might be at separate word 

than this word because it has some extra symbols in it. These all need to be taken care 

when we go for a practical application. We do not do any case folding or any removal of 

other special symbols, but all these needs to be taken care.  

So, once we have this separate dictionaries, now what we do is do here is that we just 

find out, how often a word is appearing in both positive and negative context. It is often 

possible that some of these words can appear in positive and negative context. So, the 

very basic idea here is that if a word appears more or less like equally in both the sets, 

they does not have much value, if a word words presents in one of these sets say positive 

context is queued with compared to what is happening with the negative set then that is 

more likely a positive sentiment word. If a word is more likely to belong to a negative set 

it is more likely a negative sentiment word, if it is more likely to belong to a positive set, 

it is a positive word. 
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We have the description here where we what we do is that we would find the total 

number of times a particular word that occur in the corpus and we just find the 

probability of it with its total count. 
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If we see what exactly is prob positive. So, what we do here is that we took to represent 



the notion of cuteness or more likelihood of something being occurring in one set than 

the other, we convert them to a suitable probability distribution and what we find here is 

that the positive review count and negative review count. They are more or less equal 

they are like roughly 2500 a little bit here and there, but roughly they are equal. So, yes 

we can find what is the respective count. 

We can find there is a slight difference of 300 also between both of them, but we 

essentially have more or less 2500 documents in each of those classes. Now so we can 

roughly say that they are like near to 0.5 in probability each, there is the number of 

documents that has prob positive sentiment and negative sentiment and are roughly half 

once we have that what remains is to find the individual probability of each word that is 

present. So, in order to do that, let us see, how this work, how this is calculated? So, print 

word and we will also find count, it seems to have a minor error in our work. So, 

indentation is something that is pretty important in python. 
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Here what we can find is that we can find the probability of each word belonging to a 

particular class. So, the function is defined in such a way that we first calculate all the 

prob, all the probability, all the words probability of belonging to the negative class then 

we find the probability of each of the word in the same document to belong to the 



positive class. So, suppose our new sentence is good, nice, well and done, we will 

calculate first probability of those words belonging to the negative counts and for the 

negative probability set and then to the positive probability set.  

If we see here, so done, good, well and nice, first when they are given to the negatives, 

we are getting a probability of 3.003 into 10 to the power of minus 6 as compared to 8.34 

into 10 to the power minus 6, similarly for other values also like good negative has a 

probability of appearing with 4.5 into 10 to the power minus 5 where is to good in 

positive is higher than that. So, once we have this individual scores it take the product of 

this course as shown here and we find that the positive score for this document which 

convince this 4 words is 8.06 into the power 10 power minus 8 as compared to the 

negative score which is much lesser than this. So, we can say that overall sentiment for 

this review is positive.  

Now let us feed for another sentence where the sentence is the movie was junk useless 

good for nothing sheer waste of time and money. So, it does not take much to think that 

what will be the label for this document, but what we have to see is that whether the 

system is able to capture that see if you find the sentiment of this particular document is 

negative and we can find that this particular document as a very huge difference in its 

positive score and negative score. We can find that the value here is in the order of 10 to 

the power minus 44 while the positive score is somewhere at in the value of 10 to the 

power of minus 47.  

So, this means this particular document is labeled as negative and the system is able to 

capture both the cases of positive and negative documents are released for these 2 test 

document cases. So, this is how we internally calculate the values. 
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Now, how we can use a Naive Bayes; Naive Bayes classifier for a production ready 

purpose. So, here what we do is that we use the Scikit learn library they have a Naive 

Bayes classifier already implemented what we will do is that we will use this classifier to 

do the same task that is shown here, but we test it on a larger number of test data. So, 

while giving he input to the system we have to again convert it into a suitable vectorial 

representation that this particular library understands. So, we use the count vector is a 

function which basically represents a document in terms of the number of times a 

particular word is appearing in that document and it by default removes the stop words or 

it has other possible functions as well. 

This particular function provides a whole range of facilities that makes our job much 

easier like we can often use different multi word patterns for multi word ranges like for 

example, if you have a word like hot dog though they are essentially separated by space, 

hot dog does not, when we take the individual words hot or dog, it does not capture the 

notion that is represented by hot dog. So, it is assumed to be a multi word expression. So, 

we will be; so these kind of Engram range functionality will help you to capture those 

multi word expressions and of course, we have to use some filtering criteria to remove 

the unnecessary ones and we convert both the training vectors and the test vectors into 

this vectorial representation. So, there is again a small difference in the function called 



that we are doing fit transform and transform. So, fit and transform are actually two 

different methods and this Scikit learn function fit transform convert basically performs 

both the functions together. So, in fit we have to first build the vocabulary or the unique 

word. 
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And then we convert each document to fit into any of to that vocabulary space in test 

features if a new word is appearing or that is called as out of vocabulary word that is 

ignored and only those counts are retained which are originally there in the vocabulary. 

Once we have that we run this classifier and we also calculate the area under curve that 

gives us that basically give tells us about the false positive weight and the true positive 

weight, so for a binary classifier like this information helps us in identifying the 

performance of the classifier. 
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So, Scikit learn provides a host of classifiers it includes classifiers like SVM with 

multiple Kernal options or a simple classifiers like random forests. So, you can refer to 

any of the machine learning lectures to have an understanding of these classifiers for a 

quick check of what are the different classifiers that is provided. 
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You can have a look into the scikit learns official documentation. So, the link is already 

provided here. So, here the classifier essentially provides different classifiers and they 

show on one data set how each of this classifier is performing you can have a look into 

this in addition. 
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You can have a look into this quick scikit that will help you to find the relevant classifier 

or the estimator that you should be using. So, this scikit essentially provides all possible 

or it basically summarizes what are the different estimators that is available in scikit and 

you can see that when we do a supervise approach we should be either doing a 

classification or when we have where we have to classify or we have to predict a 

particular label. 

In this case we were doing a classification where we predicting that whether something 

belongs to positive or negative. Suppose you wanted to predict the degree of positiveness 

or negativeness in a particular document you might have to model the same task as a 

regression task where it has a suite of library or suite of methods available here. In case 

of working with un supervised data like plastering or those kind of things that we have 

done in words disambiguation you might have to consider one of these clustering options 

or you can use the topic model that we have discussed in the previous tutorial. 

This essentially summarizes the class the supervised approaches for building a sentiment 

analysis tool. 
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You can also look into other standard sentiment analysis tools like the Stanford sentiment 

analyzer see if we give one of our sentences that we have used here for testing. 
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Here what we can find is that this again shows more or less negative sentiments to the 

classic the sentence. So, it basically shows each word to be either very negative or 



negative and very few words to have a positive impact. So, that will be all for this 

tutorial, please try out other classifiers as well. 

Thank you. 


