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Hello everyone. Welcome back to the final lecture of the first week. In the last lecture we 

were discussing about various empirical laws, in particular Zipf’s law and Heap’s law; 

that how the, what is the vocabulary are distributed in a corpus. 

We say that the distribution is not very uniform. There are certain words that are very 

very common. So, we saw that roughly hundred words in the vocabulary made for 50 

percent of the corpus that by the time mean that number of tokens. And on the other hand 

there are 50 percent were words in the vocabulary that occur only once. And we 

discussed whatever various relationships among my vocabulary size and the number of 

tokens that I observe in a corpus. And also how they grow with respect to each other, and 

zipfs law gave me a relation between the frequency and the rank of a word. 

So, today in this lecture we will start with the basic key processing in language. So, we 

will cover the basic concepts, and what are the challenges that one might face while 

doing the processing. So, we are going to the Basics of Text Processing. 
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So, we will start with the problem of Tokenization, as the name would suggest. 

Remember the name token: token is an individual word in my corpus. So now what 

happens when I am preprocessing the text in given in any language? What I will face is a 

string of characters; the sequence of characters. Now I need to indentify what are all the 

different words that are there in this sequence. Now tokenization is a process by which I 

convert the string of characters into sequence of various words. 

So, I am trying to segment it by the various words that I am observing. Now, before 

going into what is tokenization I will just talk about slight little problem sentence 

segmentation. So, this you may or may not have to do always and it depends on what is 

your application. For example, suppose you are doing classification for the whole 

document in to certain classes you might not have to go to the individual sentence and 

you can just talk about what are the various words that are present in this document. 

On the other hand, suppose you are trying to find out what are the important sentences in 

this document; in that application you will have to go to the individual sentence. So now, 

if you have to go to the individual sentence the first task that you will face is how do I 

segment these whole documents into a sequence of sentences. So, this is sentence one, 

sentence two and so on, and this task is called Sentence Segmentation. 
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Now, you might feel that this is very trivial task, but let us see is it trivial. So what is 

sentence segmentation? It is a problem of deciding where my sentence begins and ends 



so that I have a complete unit of words that I call as a sentence. Now do you think there 

might be certain challenges involved? Suppose I am talking about the language English, 

can I always say that wherever I have a dot it is end of the sentence? Let us see. 

So, there are many ways in which I can end my sentence. So, I can have exclamation or 

question mark that ends the sentence and they are mostly unambiguous. So, whenever I 

have exclamation or question mark I can say probably this is the end of the sentence, but 

is the case the same with a dot. So, I can think of a scenario where I have a dot in English 

but it is not the end of the sentence. So, we can find all sorts of abbreviations. They end 

with a period like, doctor, mister, mph; so you have three dots here. So, you cannot each 

of this as the end of your sentence. 

So, again you have numbers: 2.4, 4.3 and so on. That means the problem of deciding 

whether a particular dot is the end of the sentence or not is not entirely trivial. So, I need 

to build certain algorithm for finding out is it my end of the sentence. In text processing 

we face this kind of problem in nearly every simple task that we are doing. So, even if it 

looks a trivial task we face with this problem that can I always call dot as end of the 

sentence. 

So, how do we go about solving this? Now if you think about it, whenever I see a dot or 

question mark or exclamation I always have to decide one of the two things: is it the end 

of the sentence or is not the end of the sentence. Any data point that I am seeing I have to 

divide into one of these two classes. If you think of these as two classes end of the 

sentence or not end of the sentence, each point you have to divide into one of the two 

classes. And this in general, this problem in general is called classification problem. You 

are classifying into one of the two classes. 

Now, so the idea is very very simple. So, you have two classes and each data point you 

have to divide into one of the two classes; that means, you have to build some sort of 

plural algorithm for doing that. In this case I have to build the binary classifier, what they 

mean by a binary classifier? There are two classes: end of the sentence or not end of the 

sentence. In general there can be multiple classes. 

So now, for each dot or in general for every word I need to decide whether this is the end 

of the sentence or not the end of the sentence. So, in general my classifiers that I will 

build can be some rules that I write by hand, some simple (Refer Time: 06:27) nice rules 



or it can be some expressions. I say my particular example matches with this set of 

expressions it is one class, if I does not match it is of other class. Or I can build a 

machine learning classifier. So, in this particular scenario what can be the simplest thing 

to do? Let us see. Can we build a simple rule based classifier? 
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So, we will start with example of a simple decision tree. So, by decision tree I mean a set 

of if-then-else say statements. So, I am at a particular word I want to decide whether this 

is the end of the sentence or not. So, I can have the simple if-then-else kind of decision 

tree here. So, met a word and the first thing I check is are there lots of blank lines after 

that. So, this would happen in a text whenever this is the end of the paragraph and there 

are some blank lines. 

So, if I feel that there are a lot of blank lines after me; that means, after this word I may 

say this might be the end of the sentence with a good confidence. So, that is why the 

branch here says yes this is the end of the sentence. But suppose there are not lots of 

blank lines then I will check if the final punctuation is a question mark exclamation or a 

colon in that case. So, there are quite unambiguous and I may say this is the end of the 

sentence. 

Now suppose it is not, then I will check if the final punctuation is a period. So, if it is not 

a period this is easy to say that this is not the end of the sentence, but suppose this is an 

end of this is a period. So, again I cannot say for certain if it is the end of the sentence, so 



I give a again check. For simplicity I might have a list of abbreviations, and I can check 

if the word that I am correctly facing is one of the abbreviations in my list. If it is there I 

say this is not end of the sentence, if it is so here I am etcetera or any other abbreviation 

if the answer is yes I am not end of the sentence, if the answer is no that means this word 

is not an abbreviation and this will be the end of the sentence. This is very very simple if-

then-else rules. 

This may not be correct, but this is one particular way in which this problem can be 

solved. In general you might want to use some other sort of indications; we call them as 

various features. These are various observations that you make from your corpus. So, 

what are some examples? 
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Suppose I see the word that is ending with dot, can I use this as a feature whether my 

word starts with an upper case, lower case, cap, all caps or is it number. How will that 

help? So, let us see I am here and my word is 4.3. So, I am at dot I want to find out if it is 

the end of the sentence, if I can say that the current word is a number it is a high 

probability that this will be in number and it will not be the end of the sentence, so this 

can be used as another feature. 

Again by feature you can think of a simple rule whether the word I am currently at is a 

number. Or I can use the fact where the case of the word with dots its upper case or 

lower case. So, what happens generally in abbreviations? We are mostly in upper case. 



So, suppose I have doctor and it starts with an upper case I can say that this might be an 

abbreviation. Saying with the lower case: lower case will give me more probability that 

this is not an abbreviation. 

Similarly I can also use in the case of the word after dot. So is it upper case, lower case, 

capital or number. So, how will that help? Again whenever I have the end of the sentence 

the next word in general starts with a capital. So, again this can be used. What can be 

some other features? So, I can have some numerical features, that is I will have certain 

thresholds. What is the length of the word ending with dot? Is it if the length is small it 

might be an abbreviation, if the length is larger it might not be an abbreviation. And I can 

also use probably. What is the probability that the word that is ending with dot occurs at 

the end of the sentence. So, if it is really the end of the sentence it might happen then that 

in a large corpus this end sentence quite often. 

Something I can do with the next word after dot, is it the start of the sentence. What is 

the probability that it occurs in the start of the sentence in a large corpus? So, you might 

be able to use any of these features to decide given a particular word is it the end of the 

sentence or not. So now, suppose I ask you this question do you have the same problem 

in other languages like Hindi? 

So, in Hindi you will see that in general there is only agenda that you use to indicate the 

end of the sentence and this is not used for any other purpose. So this problem you will 

see is again language dependent. This problem is there for English, but not so for Hindi. 

But you will see there are other problems that do not exist for English language, but are 

there for other Indian languages. We will see some of those examples in the same (Refer 

Time: 12:14). 
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So, how do we implement a decision tree? As you have seen this is simple if-then-else 

statement. So now what is important is that you choose the correct set of features. So, 

how do you go about choosing the set of features? You will see in your from your data 

what are some observations that can separate my two classes here. So, my two classes 

here are; end of the sentence and non end of the sentence. And what are the observations 

we were having? In general it might be an abbreviation in the case of the word and that is 

before the dot: maybe upper case or lower case and one of these might indicate one class 

the other might indicate other class. So, all these are my observations that I use as my 

features. 

Now, whenever I am using numerical features like the length of the word before dot, I 

need to pick some sort of threshold; that is whether the length of the word is between 2 

to 3 or say more than 3 between 5 to 7 like that. So, my tree can be if the length of the 

word is between 5 to 7 I could one class otherwise I could another class. 

Now here is one problem; suppose I keep on increasing my features it can be both 

numerical and non numerical features. It might be difficult to set up my if-then-else rules 

by hand. So, in that scenario I can try to use some sort of machine learning technique to 

learn this decision tree. In the literature there are lots of such algorithms available that 

given a data and a set of features we will construct a decision tree for you. 



So, I will just give you the names of some of the algorithms. And the basic idea on this 

they work is that at every point we have to choose a particular split. So, you have to 

choose a feature value that it splits my data into certain parts. And I have certain criteria 

to find out what is the best way to split. So, one particular criterion is what is the 

information given by this. So, these algorithms that we have mentioned here like ID3, 

C4.5, CART they all use one of these criterions. 

In general once you have identified what are your interesting features for these tasks. 

You are not limited to only one classifier a decision tree, you can also try out some other 

classifiers like. 
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Support vector machines, logistic regression and neural networks. These all these are 

quite popular classifiers for various analytic applications. So, we will talk about some of 

these as we will go to some advanced topics in this course 
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Now coming back to our problem tokenization; we said that tokenization is a process of 

segmenting a string of characters into words, finding out what are the different words in 

this question. Now remember we talked about token and type distinction; suppose I give 

you a simple sentence here I have a can opener, but I cannot open these cans. 

How many tokens are there? If you count there are 11 different occurrences of words. 

So, you have 11 word tokens, but how many unique words are there. So, you will find 

there are only 10 unique words, which word repeats, is the word I repeats twice. So, 

there are 10 types and 11 tokens. So, my tokenization is to find out each of the 11 word 

tokens from the sentence. 
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In practice at least for English you can use certain toolkits that are available like NLTK 

in Python, CoreNLP in Java and you can you can also use the Unix commands. So, in 

this course you will mainly be using NLTK toolkit for doing all pre processing task and 

in some other tasks as well, but in general you can use any of these three possibilities. 
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So for English most of the problems that we will see are taken care of the tokenizers that 

we have discussed previously but, still it is good to know; what are the challenges that 

are involved when I tried to design a tokenization algorithm. 



See for example, here you will see that if I encounter a word like Finland’s in my data. 

So, one question that I have is whether I treat it as simple Finland, as it is Finland’s or I 

convert it to Finland’s by removing the apostrophe. So, this question you might also try 

to defer to the next processing step that you will see, but sometimes you might want to 

tackle this in the same (Refer Time: 17:14). Similarly, if you see what are, do I treat it as 

a single token or two tokens what are? This trouble you might have to solve in the same 

step, whether I treat it as a single token or multiple tokens; same with I am, should not 

and so on. 

Similarly whenever your name end at each like San Francisco, should I treat it as a single 

token or two separate tokens? Now remember when we were talking about some of the 

cases why (Refer Time: 17:45) hard. So, you might have to find out that this particular 

sequence of tokens is a single entity and treat it as a single entity, not as multiple 

different tokens. So, this problem is related. Similarly if you find m dot p dot h whether 

you call it a single token or multiple tokens. 

So now, there are no fixed answers to these and some of these might depend on what is 

the application for which you are doing this pre processing. But one thing you can 

always keep in mind; suppose you are doing for the application of information trivial if 

the same sort of steps that you apply for your documents should be applied to your query 

as well otherwise you will not be able to match them perfectly. Suppose, if I am using it 

for information trivial, so I should use the same convention for both my documents as 

well as the queries. 
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So then another problem can be; how do I handle hyphens in my day? This looks again a 

simple problem, but we will see it is not that simple. So, let us see some kind of 

examples: what are the various sorts of hyphens that can be there in my corpus? 

So, here I have a sentence from a research paper abstract and the sentence says this paper 

describes MIMIC an adaptive mixed initia-tive spoken dialogue system that provides 

movie show-time information. So, in this sentence itself you see two different hyphens: 

one is with initia-tive another is show hyphen time. 

So, now can you see that these two are different hyphens; the first hyphen is not in 

general that I will use in my text, second hyphen I can used in my text I can write show 

time with an hyphen, but how did this hyphen initiative came into the corpus. So, we 

have given this a title end of line hyphen. So, what happens in research papers for 

example, whenever you write a sentence you might have to do some sort of justification 

and that is where you end the line even if is not the end of this of the word. So, you will 

you will end up with in hyphen. 

So now, when you are trying to pre process and when you are retrieving such kind of 

hyphens you might have to join these together, and you should, you have to say that this 

is a single word initiative and not initia hyphen tive. But again this is not trivial because 

for show time you will not do the same; show time you might want to keep it as it is. 



Then there are some other kinds of hyphens like; lexical hyphens. So, you might have 

these hyphens with various prefixes like co-, pre-, meta-, multi-, etcetera. Sometimes 

they are sententially determined hyphens also, that is they put hyphens so that it becomes 

easier to interpret the sentence. Like here case-based, hand-delivered etcetera are 

optional. 

Similarly, if you see in the next sentence three-to-five-year direct mark marketing plan; 

three to five year can be written perfectly without keeping the hyphens, but here you are 

putting it so that it becomes easier to interpret that particular occurrence. Again when 

you are doing tokenization your problem that how do I handle all these hyphens. 
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Further, there are various issues that you might face for certain languages, but not others. 

For an example like in French if you have a token like ensemble, so you might want to 

match it with ensemble. So, that might be a similar problem that we are facing in 

English, but let us take something in German. So I have this big sentence here, but the 

problem is that this is not a single word. This is a compound composed of four different 

words and the corresponding English meaning is this one. So, you have four words in 

English. So, when you are putting in French they make a compound. 

So, now what is the problem that you will face when you are processing the German 

text? And you are trying to tokenize it? So, you might want to find out what are the 



individual words in this particular compound. So, you need some sort of compound split 

up for German. So, the problem is there for German not so much for English. 
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So now, what happens if I am making a language like Chinese or Japanese? So, here is a 

sentence in Chinese. So, what do you see in Chinese words are written without any 

spaces in between. Now, when you are doing the pre processing your task is to find out 

what are the individual word tokens in this Chinese sentence. This problem is also 

difficult because in general for a given utterance of a sequence of characters there might 

be more than one possible ways of breaking into sequence of words and both might be 

perfectly valid possibilities. 

So, in Chinese we will not have not have any space between words and I have to find out 

what are the places where I have to break these words; and this problem is called word 

tokenization. Same problem happens with Japanese and here for the complications 

because they are using four different steps like Katakana, Hiragana, Kanji and Romaji. 

So, these problems become a bit more severe. 
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Now, the same problem is there even for Sanskrit. So, if some of you have taken a 

Sanskrit course in your class 8th or 10th you might be familiar with the rules of Sandians 

in Sanskrit language. So, that is it. 

This is a simple single sentence in Sanskrit, but this is a huge this looks like a sing single 

word, it is not a single word. It is composed of multiple words in Sanskrit and they are 

combined with a Sandi relation. This stands for nice proverb in Sanskrit that translates in 

English as one should tell the truth, one should say kind words, one should neither tell 

harsh truths nor flattering lies; this is a rule for all times - this is a proverb. 

And this is a single sentence that talks about this proverb, but there all the words are 

combined with Sandi relation. So, if we try to undo the Sandi this is what you will find at 

the segmented text. So, there are multiple words in this sentence they are combined to 

make a single, it looks like a single word. 

So, this problem we saw in Chinese, Japanese and Sanskrit, but in Sanskrit the problem 

is slightly more complicated and why is that. So, in Japanese and in Chinese when you 

try to combine various words together you simply concatenate them, you put them one 

after another without making any changes at the boundary. It does not happen in Sanskrit 

when you combine two words you also make certain changes at the boundary and this is 

called the Sandi operation. 



So, in this particular case since see here I have the word ‘bruyat’ and the word ‘na’, but 

when I am combining I am writing it ‘bruyanna’. So, you see here the letter ‘t’ gets 

changed to ‘n’ that means when I am trying to analyze the sentence, so this particular 

sentence in Sanskrit I need to find out not only what are the breaks, but what is the 

corresponding word from which this sentence you derived. So, from here to find out the 

actual words are bruyat lesna that gives me this ‘bruyat’. And this is very very common 

in Sanskrit that you are always combining words by doing a Sandi operation. So, this 

further complicates my problem of word tokenization or segmentation. 
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So this is just a list from Wikipedia what are the longest words in various languages. 

Then note this sentence is about the words. You see in Sanskrit the longest word is 

composed of 431 characters, it is a compound. And then you have Greek and Afrikaans 

and other languages, in English you will see that the longest word is of 45 characters is 

non-scientific. 
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So, what is the particular word in Sanskrit that is composed of 431 letters? So, this was 

from the Varadambika Parinaya Campu by Tirumalamba; this is a single compound from 

his book. 
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So now, when I talk about this problem of tokenization in Sanskrit or in English this 

problem is also called word segmentation, have a sequence of characters and you 

segment it to find out individual words. Now what is the simplest algorithm that you can 

think off? Let us take as in the case of Chinese. So, the simplest algorithm that works is a 



greedy algorithm that is called maximum matching algorithm. So, whenever you are 

given a string you start you point to it at the beginning of the string. Now suppose that 

you have the dictionary and the words that you are currently seeing all should be the in 

the dictionary. 

So, you will find out what is the maximum match as per my dictionary in the string, you 

break there and put the pointer from at the next character and again do the same thing. 

So, this greedily chooses what are actual words by taking the maximum matches. And 

this works nicely for most of the cases. 

So, this (Refer Time: 27:55), now can you think of some cases where the segmentation 

will also be required for the English text? In English in general we do not combine words 

to make a single word. We do not do that, but what is the scenario where we are doing 

that right now. So does, do hash tags come into mind. For example, suppose I have hash 

tags like ThankYouSachin, and musicmonday. So, here different words are combined 

together without putting a boundary in between. 

So, if you are given a hash tag and you have to analyze that you have to actually segment 

it into various words. 
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So, when I talk about Sanskrit, so this we have a segment to available at the site Sanskrit 

dot inria dot fr. So, we will just briefly see what is the design principle of building a 



segmentor in Sanskrit? So, first we have a geometry model that says how do I generate a 

sentence in Sanskrit. I have a finite alphabet sigma; that means a set of various characters 

in Sanskrit. Now from this finite alphabet I can generate a lot words that are composed of 

various number of phonemes or all letters from this alphabet. 

Now, when I have a set of words I can now combine them together with an operation of 

Sandi; that is what I mean by sigma star here; so w star here. So, I have a set of words w 

and I will do a cleaner closure; that means, I can combine any number of words together, 

but whenever I am combining words I am doing them by a Sandi operation. This is the 

relation between the words. 

So, I have my set of inflected words also called Padas in Sanskrit and I have the relation 

of Sandi between them and that is how I generate sentences. But the problem is how do I 

analyze them. So, that is the inverse problem. That is, whenever I am given a sentence w 

I have to analyze it by inverting the relations of Sandi so that I can produce a finite set of 

word forms w 1 to w n. And I am saying together with the proofs so that is a formal way 

of saying that, but what I mean is that w 1 to w n whenever they combine by Sandi 

operation they give me the actual Sandi the initial Sandi’s. So, that is how the segment is 

built. 
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Now this is a snapshot from the segmentor. So, I gave the same sentence there and it 

gave me all the possible ways of analyzing the Sandi’s. And it says that there are 120 



different solutions. So, here whenever I have bruyana, so you see there are two 

possibilities bruyat and bruyam. That is like that it gives me all the possible ways in 

which this sentence can be broken into individual word tokens. 

Now this is another problem that I will have to find out what is the most likely word 

sequence among all these 120 possibilities. But we can use many many different models 

that we will not talk about in this lecture probably in some other lectures. 
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So coming back to normalization; we talked about this problem that the same word 

might be doing multiple different ways like U dot S dot A versus USA. Now I should be 

able to match them together. Especially, if you are doing information retrieval we are 

giving a query and you are retrieving from some document. Suppose your query contains 

U dot S dot A if the document contains USA, if you are only doing the surface able 

match you will not be able to map on to each other. So you will have to consider this 

problem in advance and do the pre processing accordingly of either your documents or 

the query, but using the same sort same sentence. 

So, what we are doing by this? We are defining some sort of equivalence classes. We are 

saying USA and U dot S dot A should go to one class, and the other same type. 
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We also do some sort of case folding that is we can reduce all the letters to lower case. 

So, whenever I have the word like w o r d I will always write small w o r d, so that 

whenever even if it is starting the sentence and it occurs in capitals because of that in 

general I know that this is a word w o r d. But this is not a generic rule sometimes 

depending on application you might have certain exceptions. For example, you might put 

treat the name and it is separately. So, if you have entity General Motors you might want 

to keep it as it is without case folding. 

Similarly, you might want to keep US for United States in upper case and not do the case 

folding. And this is important for the application of machine transition also, because if 

you do a case folding here you will know u s in lower case that means something else 

versus US that is in United States; excuse me. 
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We also have the problem of lemmatization; that is you have individual words like am, 

are, is; and you want to convert them to their lemma; that means, what is the base form 

from which they are derived. Similarly car, cars, car’s cars’; so all these are derived from 

car. Again this is some sort of normalization we are saying all these are some sort of 

equivalence class because they come from the same word from. 

So, in the problem of lemmatization is that you have to find out the actual dictionary 

head word from which they have derived. 
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And for that we use morphology. So, what is morphology? I am trying to find out the 

structure of word by seeing what is the particular stem the headword and what is the 

affix that is applied to it. So, these individual units are called various morphemes. 

So, you have a stems that are the (Refer Time: 33:55) hybrids and the affixes that are 

what are the different units like as for plural etcetera you are applying to them to make 

the individual word. So, my examples are like for prefix you have un, anti, etcetera for 

English and a-, ati-, pra- etcetera for Hindi or Sanskrit. Suffix like ity, -ation etcetera and 

-taa -ka -ke etcetera for Hindi. And in general you can also have some infix, like you 

have the word like vid and you can infix n in between this is in Sanskrit. So, we will 

discuss in detail about it in morphology later. 

So, there is another concept you have lemmatization where you are finding the actual 

dictionary headword. So, there is also a concept called stemming where you do not try to 

find the actual dictionary headword, but you just try to remove certain suffixes and 

whatever you obtain is called a stem, so this crude chopping of various affixes in that 

word. 
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So, this is again language dependent. So, what we are doing here words like automate, 

automatic, automation all will be reduced to a single lemma automatically. So, this is 

stemming, so you know the actual lemma is automate with an e, but here I am just 



chopping off the affixes at the end. So, I am removing here this ic, ion all and putting it 

to automate. 

So, this is one example; if you try to do a stemming here see you will find from example 

e is removed, from compressed ed is removed and so on. So, what is the algorithm that is 

used for this stemming? 
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So, we have the Porter’s algorithm that is very very famous. And this is again some sort 

of if-then-else rules. So, what are some examples here? What is the first step? I take a 

word if it ends with sses I remove es from there and I end with ss, so example is caresses 

goes to caress. If not then I see whether the words end with ies I put it to i - like ponies 

goes to poni. If not I see if the word ends with ss I keep it as ss, if not I see if the word 

ends with s I remove that s. Cats goes to cat but caress does not go to caress with only 

one s because this is step comes before. If there is a double s and in the word I written it 

otherwise if there is a single s I remove it that. 

Like that there are some other steps. So, if there is a vowel in my word and the word 

ends with ing I remove ing. So, walking goes to walk, but what about king you see in k 

there is no vowel. So, king will be written as it is. Same is a vowel and there is an ed I 

remove this ed. And I have this word played to play. So, you can see that what is the use 

of this heuristic of having this vowel. If you did not have this vowel you would have 

converted king to k. 
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And like that there are some other ways like if the word ends with ational then I will put 

it put ate, so rational; so relational to relate. And if the word ends with izer I convert I 

remove that r digitizer to digitize ator to ate. And if the word ends with al I remove that 

al, if the word ends with able I remove that able, if the word ends with ate I remove that 

ate. So, like that these are some steps that I take from my corpus from each word I 

convert it to its step, it does not give me the correct dictionary headword, but still this is 

a good practice in principle for information retrieval, if you want to match the query with 

the documents. 

This is for this week. Next week we will start with another pre processing task that is a 

spelling correction. 

Thank you. 


