
Natural Language Processing 
Prof. Pawan Goyal 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture - 35 

Word Embeddings – Part II 

 

Hello everyone, welcome to the fifth lecture of this week. So we are talking about word 

embeddings. So in the last lecture we discussed the what is the different ideas behind 

using word embeddings, what can be some interpretation given to the different 

dimensions here and what are different tasks where you can use these word embeddings. 

But we do not go through the learning part, how do we actually obtained these word 

embeddings for different words. So today in this lecture we will try to discuss in detail 

how do we obtain these embeddings. 

(Refer Slide Time: 00:53) 

 

So in the last lecture we discussed that there are 2 different models for word embeddings. 

So that mean two main models one is continuous back away words model and another is 

skip gram model. What is the idea there? In continuous back of words model, using the 

neighboring words, I am trying to predict the center word. In a skip gram model using 

the center word I am trying to break the neighboring words. 

So let us see what we do in CBOW model. So here let us say we have a prose like this. 

The recently introduced continuous skip gram model is an efficient method for learning 



high quality distributed vector representation and so on. So that is the test data that I have 

so much and I am trying to learn representation for various words embeddings.  

So at a time I will go through one particular window here. So I will focus on a word. So 

let us say I am focusing on one word like learning. So what I will do? I will take a 

window around that word. Now window size can vary and this can be a hyper parameter 

that you will choose. So you can choose a I will take forward before there and forward 

after that. So using these 8 words around this word learning, I will try to predict this 

word learning. So how do we do that? So imagine is sliding window over the text, that 

includes the central word and with 4 words that precede and the 4 words that follow it. 

Like here learning is my focus word, and there are 4 words before it and for words after 

that. And you can also call that as the context words. And usually the context words you 

are trying to break the focus word. 

(Refer Slide Time: 02:40) 

 

So this is some sort of network representation and how this learning will take place. So 

you are seeing here in the input you have, input you have various column vectors. So 

what do I mean by this? So what you are doing here you are putting in one hot encoding 

as the input. So I have this column vector of size v. 



(Refer Slide Time: 03:09) 

 

So the column of size V now, so V is the size of my vocabulary. I have that many words 

my vocabulary. So I may not use this only V, V is the size of my vocabulary. Now in 

your context you are heading having certain word that will be there in the vocabulary. So 

let us say this is the index of that word. So this input would be everything else a 0 and 

this will be 1. So one hot encoding of that word, so column vector; so like that in your 

context suppose you have here 8 words. So we will feed all these 8 one hot forms. So 

here it might be one here 0 here it might be one somewhere and everything else 0. That is 

your input that you are feeding. Now using this input then you are having a hidden layer 

this is N dimension. I remember this N will be important we will see what is this N. 

So now the size V. Now I want to map these 2 this N dimensions. So I will have a weight 

matrix. Let us say w1 of dimension. So this is V cross 1 sorry. So this you can take it as 

1 cross V. So you will have it as V cross N, so that the final representation is N 

dimensional now. So you will have the same weight matrix at each input. So you will get 

and then you can take the average of all these now from these N dimension you again go 

to your V dimension. This is you are output layer. So what will be the second weight 

here? This will be N cross V. See I starting with a V dimension going to N dimension 

and hidden and then going to the V dimension in the output now. So what you are doing 

here? So before going into what are the connections a network you are putting some 

input there are your context words. So suppose you are having 8 different one hot vectors 

and whatever happens here finally, you are trying to create your center word. This should 



be your center word. So what will happen here? You will have various weights W 1, W n 

some numbers you will W V some V different numbers you will get. 

And you want to ensure that the actual center word. Suppose this is my center word. This 

is the highest probability. And if it is not having the highest probability, you will try to 

modify the weights in your network. So that it gets a higher probability then what is 

getting right now. 

So now let us see what do we mean by all these connections. So what would happen 

from here? So let us go back to the slides. So each word is encoded in one hot form that 

is here. We have a single hidden layer and an output layer. So you are having 2 different 

weight matrixes one is V cross N another N cross V. So from input you go to hidden 

from hidden you go to output. Output you are trying to predict the center word. 

(Refer Slide Time: 07:15) 

 

So what is my training object is here? So you see I am getting some word, some numbers 

for different all my V words at the output layer. And this you can think of as the 

probability value. And you might have a question that how do I convert these numbers to 

probability we will see that. So assume that you having V different probability values, 

now you want to maximize the conditional probability of observing the actual output 

word given the input context word with regard to weights. 



So you say that I want to maximize the probability that I will obtain the actual what that I 

saw in my input, and not any other word. So whatever probability I am getting that 

becomes my objective function. So I want to maximize this condition probability of 

output word given all my input words. And this probability will be expressed in terms of 

all these weights that I am having in my network. So in our example what would happen, 

I am giving this input all these 8 words an efficient method for high quality distributed 

vector, and I want to maximize the probability of getting learning as the output this is my 

center word. 

(Refer Slide Time: 08:24) 

 

Now what happens from input to the hidden layer? So input we are saying you are 

feeding one hot vectors. So if there are 8 different input words I am having 8 different 

one hot vectors. Now what do I mean by multi bank this one hot vector with my first 

weight matrix that is of dimension V cross N. So you can think of it like that. So you put 

using an input. So this is one word and having a corresponding element is one that that is 

my input word and you are multiplying it with V cross N weight matrix. So this 

operation is nothing like this nothing, but you are taking the corresponding row of this 

matrix. This matrix has V different rows. So these V rows you can think of as if 

corresponding to V different words in my vocabulary. So whenever you are feeding a 

one hot form of one word you are picking up that row and so you are doing it for 8 

different words. So you are picking 8 different rows in my initial weight word weight for 

matrix, and then you are having given c input words. So activation function for the 



hidden layer will be simply summing the corresponding hot rows. So I will pick up the 

hot rows here that correspond to the input words and divide by c, so that I have an 

average representation. 

So now you understand what is going from input to hidden layer. You are taking c 

different one hot c different rows from your weight matrix and averaging those that is 

what goes in your hidden layer. 

(Refer Slide Time: 09:59) 

 

Now, what happens from hidden to output layer? So remember we have a second weight 

matrix W 2 that goes from hidden to output layer and it is dimension is N cross V. So 

now, a hidden layer dimension each 1 cross M. So if I multiply this 1 cross a matrix with 

this N cross V matrix I will get a 1 cross V matrix and that is my output layer. So this 1 

cross V matrix even think of as having weights for different words in my vocabulary. 

And I want to maximize weight for my center word. So from the hidden layer to output 

layer the second word matrix W 2 can be used to compute a score for each word in my 

vocabulary and now you can obtain the weights. How do we convert them to probability 

values and for that you use soft max? What is the idea of soft max? 

So here you will you get the weights W 1 to W V. They can be any real numbers. Now 

how do you convert that to probability distribution? So this is a simple idea that is in soft 

max. So in soft max what you do is you are given W 1 to W v and you want to convert 

that to a probability distribution. So you will see that I simply multiply all these by. So I 



will put an exponent over these, so e to the power W 1 e to the power W v. Now they are 

all positive numbers and then to convert them to probability I will just divided by 

summation over e W i for all i. 

So now this is this will some off to 1 because this is normalize and these are my 

probability distribution. So I have these weights I use a soft max to convert them to 

probability values. And then I will try to maximize the probability of my actual center 

word. This will become my training objective and based on that I will learn my weights. 

So I will talk a bit about this learning problem in the when I go to the next model of 

escape ground, but suppose we have some way of learning these weights, and finally, I 

have the optimal set of weights W 1 and W 2. Now where are the word vectors, what are 

your word vectors. Here I am feeding one hot vector, this is not being learned. This is the 

same. So where are my word vectors being learned now if you think about it. So what I 

am learning are the weight matter research. This is off V cross N this is N cross V. So I 

can take a transfer this also will become V cross N. So you can think of it as if for each 

word you are learning a N dimension representation. So after you learn this matrix these 

weight one and weight 2 will correspond to your word embeddings. 

So W 1 will be of size, So W 1 will be of size V cross N. So you can take any vector i 

and get a N dimensional representation and the sign you can also think of as your d, d 

dimensional representation. So for each word you are getting a d dimensional vector. 

Similarly, for W 2 you will get similarly if you take a transpose you will get a V cross N 

representation. And in general what you do, you can take a, so you are getting 2 vectors: 

one from W 1 from W 2. So we can finally, combine these 2 vectors you can either 

concatenate these vectors or the same word or some these over or taken average and that 

works fine. So this is the addition about what is the kind of network that you use for 

learning these embeddings. So these weights are nothing, but my embeddings. That I am 

learning. So this is about continuous back of words model. Now what will happen skip 

gram, in a skip gram model the network will slightly change. So now, I will feed only the 

center word here only one input vector, but I will predict multiple contexts words.  

So now from input to hidden there are only one. So the only one input vector, but output 

there are multiple vector. 



(Refer Slide Time: 14:41) 

 

So let us look at the skip gram model. Skip gram model is the opposite of CBOW model. 

So you have the center word, as the sing single input vector and the target context words 

are at the output layer. This is my output layer. And you can now very easily correlate 

with what we did in CBOW. So the weights correspond to roughly the same idea. 

So now let us formally define so we see how in the using the network we can think about 

the learning. How the learning will take place and how the weight updates will take 

place, but suppose you want to write it mathematically and how do we do that? 

(Refer Slide Time: 15:19) 

 



So yeah this is very analogues to what we find the case of CBOW. So here from input to 

hidden layer I am simply copying the row from the weight matrix W 1. So I am having 

only one input. So I will copy only one row and that will go to my hidden layer. Now at 

the output layer we will have see different distributions. And I will try to predict the see 

different context words using my hidden layer and objective is to maximize some 

prediction errors across all the context version my output layer. So you want to predict 

although. So I want to maximize the probability for observing my actual context words. 

So let us say we have a window, where I am having small c words in the left small c 

words in the right. 

(Refer Slide Time: 16:20) 

 

So what can be my training objective? It can be I am trying to maximize, suppose I take 

a log probability W t plus a given W t. Wt is the center word and I am going from minus 

c less than equal to j that is equal to c. Window of size c around j and j is not equal to 0. 

And this I can do for all possibility. All possible center words and this becomes my 

training objective. 



(Refer Slide Time: 16:56) 

 

So we will see that. So I am predicting surrounding words in the window of length c of 

each. Word my objective function is I want to maximize the log probability of any 

context word given the current center word. So I am trying to maximize this probability. 

Probability of W t plus j given W t and sum over all the possible context words and then 

I can sum it over all the possible words in my input, and this becomes my overall 

objective, soj theta and theta of all the parameters all the weight matrix W1 and W2 that 

I am trying to learn. 

So now this is my objective function and I want to maximize that and by doing that I 

want to learn my parameter theta and how do we do that. 



(Refer Slide Time: 17:51) 

 

Firstly, let us see how will be compute these probabilities. Probability Wt plus j given 

Wt; now this will be actually you have already seen that in the case of using the network 

but using which some mathematics can be show that. So idea is that let us say I am 

having a probability for P Wo given WI, WI is my context world, and W is the output 

word. That is the; I am sorry so I should say as the center word. And this is my output 

word these are all the context words. Let us say for a given context words how do we 

write it. And I am saying we can write it in this form. That is exponent V prime Wo 

Transpose V WI divide by sum over W is equal to one to capital W V prime W transpose 

V WI. And these are formulation of this probability. And let us try to understand that. So 

whatever different is we have written here. So one thing you are seeing there is a V and 

there is a V prime. So for each word you have 2 vectors. One is V another is V prime. So 

V is for the so V is use only for the input center word. And V prime is use for output. 

So when I am trying to use the input word to pre the output word I will simply take a dot 

product of these. Now both is vector like column vectors. So V WI will be of this form, 

and V prime W will also be as a column vector. So how do I get a number by 

multiplying these 2? I will take a transpose of this and multiplied with this and that is 

what I am doing here. V prime W transpose times V WI. That gives me single number. 

Now this number I want to convert to a probability value. So then I am using a softmax 

over that. Exponent over this number divide by I will do it for all the words in output. So 

that is why I have a summation over all the word, W is the total number of words in my 



vocabulary. This is nothing about a probability distribution, and you can see that 

summation P Wo given WI for all words Wo will add to 1 because of this normalization 

factor. So this is added to word this is giving me a condition probability of Wo given WI. 

Now as a simple exercise you can also try to see how this number comes from the 

network that we talked about. So we had a networking interpretation. Now we have a 

simple matrix short of interpretation. 

So how they correspond to each other? And they use the idea that word one sorry 

weights 1 and weighs 2. What are these? Weights weight 1 correspond to the input and 

way to correspond to output. Use this idea and see that by using the network also are you 

getting the same form of this probability by putting x softness over the output layer and 

you will you will see that you are actually getting the same form. So now, I have this 

formulation Wo given WI this particular formulation and I put it here for all the words in 

my context and this becomes my j theta. This is my objective function.  

Now what is my objective? I want to learn my V an V prime. So I will try to learn my V 

and V prime such that this is optimized and for that there is a simple way that is you can 

use getting descent algorithm. So you can try to take partial derivative of j theta with 

respect to each of these parameters and update your weights accordingly. So this is the 

probability condition, probability distribution function that we have found and V and V 

prime are input and output vector representation of the same of the same word W. So 

every word has now 2 vectors. 



(Refer Slide Time: 23:01) 

 

So suppose I have d dimensional vectors. So d is the dimensional of my hidden layers in 

network terms or for each word what is the representation that we using we using 

dimension representation. So I have the many words. So what is the size of my parameter 

theta? So I have capital V words for each word I have been input vector and output 

vector. So there are 2 V vector and each vector of dimension d. So I have 2d times 

capital V that many parameters slower this should my whole set theta. 

(Refer Slide Time: 23:41) 

 



And what is the simple gradient descent formula. So this is like you take the derivative 

with respect to that particular parameter. So theta j new is theta j old minus alpha is my 

learning date and you take a partial derivative of j theta with respect to the parameter 

when putting the old values. 

(Refer Slide Time: 24:20) 

 

Now, I am supposing that you know the idea gradient descent that is used to optimize 

yours minimize a particular function. So if I want to give this idea very briefly. So this is 

like suppose you have a simple function like this. And I want to find out for what 

parameter theta, of what parameter x will suppose, this is a function over x and this is my 

y. For what value of x this is minimized. So what I will do? I will start with N e x. So 

suppose I am starting with this x 0. I will find out the value of function. So I go to the 

function. So why is suppose f x 0.  

Now I want to know what is the value of x where there is minimized. So what I will do? 

I will take the derivative of the function at this point f prime at x 0 and now, if I have to 

minimize if this direction of my gradient I have to go in the opposite direction of my 

gradient. So my new value should be x naught minus f prime x naught. So I will go into 

opposite direction and I will use some learning rate with what rate you will go in this 

direction and this is simply the idea of gradient. You keep on doing that. So you go 

somewhere again you find our suppose you are going at this point. So now, your gradient 

will point you to this direction. So will try to go in this direction again gradient will point 



you some direction and finally, you will converge. So this is a very simple idea of 

gradient descent, but I will suggest that you have a look at it that what is actually the 

gradient descent. 

So this is simple function, but your function can be over multiple parameters. So like 

here I have my theta with in 2d V dimension. So I have 2d times capital V many 

parameters. My theta is a function my j theta is a function of all these parameters. So 

what I will do, I take a partial derivative with respect to each of these parameters and 

accordingly update those parameters and this is how it will look like. So we are not going 

in in doing the derivation because that would not be in the scope of this course, but if you 

are interested you can try to find out if I derive this form what update values do I get for 

different what vectors how do I update these vectors. 

(Refer Slide Time: 26:48) 

 

And now once I have done that, I have 2 different vectors V and V prime. And I can 

simply some these over. And that will give me the final embedding for each word. And if 

you want to understand more about how do we learn these parameters. So you might 

have a look at this paper and this gives the nice tutorial for parameter learning and also if 

you want to try out an interactive demo, so you can try out here. 



(Refer Slide Time: 27:23) 

 

So what to work is one famous model and such 2 variation c V W and skip gram. And 

both are used. So in some tasks skip gram has shown to be better in some CBOW has 

shown to be better. And there are many other tricks that I used for learning these 

parameters that we have not covered. I have only tried to give you the intuition. So I 

hope you will at least have an idea that how these word vectors are learned from my 

data, by just predicting neighboring words from the context or context from the 

neighboring word. And what is the embedding? So, how these weight vectors for my 

embeddings. 

So now there are some other models, so one other popular model is glove model. So 

what is a basic cognition of glove model? So in this skip gram I am trying to learn my all 

my embedding from scratch. So in glove model what they are saying. So from a corpus 

you can kind of count the co-occurrence. See know with that is what we did in the 

distribution semantics, we would be counting co-occurrence. Now what they are saying? 

So this gives a very good idea about the words. So which words are similar to what are 

the words? And suppose you find out what is the co-occurrence probability for any 

towards. Now try to make word vectors such that when you do a dot product between 

towards you get close to the actual co-occurrence that you are seeing in the corpus. 

And by doing that you will get a low dimensional representation and also it will take care 

of the words that are coming very sparsely, where you do not have enough data in the 



corpus to predict the co-occurrence. And this is the simple objective function. So that is 

if you look at the objective function. So forget word f, f is a few simple function that that 

make sure that if certain words are certain co-occurrence, we are very popular you do not 

base your learning towards those. See you just clip those at certain point. So everything 

above that will be converted to this one. 

So this is the main idea here of this glove vectors. So you are having in word definition 

for i and j that you want to learn. An idea is try to learn them that are that such that they 

are resembling their whatever you get from the co-occurrence probability. So P i j is 

from the co-occurrence. You can use either P m i condition probability or many other 

things. So find out w i, w j such that they are close to this co-occurrence probability. And 

then we have these objective function and you optimize this objective function and try to 

learn your different weights. So you are trying to combine the best of both words. Using 

the count based methods and the direct prediction methods. And using both of these you 

are trying to come up with your word vectors. And these vectors have also become very 

popular because the training is much faster than then my skip gram model because now 

you are not going to each individual word in your and all the windows. You have already 

computer the counts now you are only looking at the pairs word pairs and one 

maximizing that. And even with the small corpus and small vectors they have shown 

very good performance. 

So one good thing is that suppose you want to use this vector finding of your task, so 

either word vectors or glove vectors are freely available on different websites. So what 

do we already told the website in the previous lecture for glove, you can go to this 

Stanford website and there you can download code as well as the vectors. And these 

vectors you can use for many of your tasks, where you are trying to find out whether 2 

words are similar, or you are trying to find out some analogy task a is to b then c is to 

what. And many other applications they have been used in. So I think this is what I had 

to say for this tropical distribution semantics, this is a very well growing research field 

and lot of new thinks happening.  

So I hope whatever we have discussed will help you to also understand the papers in this 

field if you want to going in further depth, and also you can try out these ideas for many 

of your applications. So in the next week what we will do. So we will start with a 



separate notion of semantics that is Leska semantics. So how to use lexicon to find 

semantics between words. 

Thank you. 


