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Welcome back. So, we are talking about distributions semantics. So, in this fourth lecture 

and the fifth lecture of this week, we will talk about another very interesting idea that is 

word embeddings that come from distribution semantics. So, what are word 

embeddings? So, when I am talking about word embeddings, so they are like word 

vectors. So, the word vectors are nothing but simple vectors of vectors of weight. So, we 

talked about these factors. So, you are having some dimensions and they are 

representation words in this set of dimensions and their various weights. 

So, now we also talked about this one-hot encoding that is among the n-dimensions only 

one dimension is 1, everything else as 0; and these dimension might correspond to the 

index of the particular word that I wanted to be set. Now, and we saw that if I if we are 

using one hot encoding I cannot compute the similarity among words. So, if I motel and 

hotel, there will have one at different places, and if I compute similarity, if I do an AND, 

it will be 0. So, this is not conducive to for semantic similarity between words. 
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So, now let us take a simple example. So, have a vocabulary that contains only five 

words king, queen, man, woman and child. So, I have vectors in five dimension. So, I 

can encode queen like this. So, queen has a weight of 1 in the second dimension that 

correspond to the index of queen and it has weight 0 and other dimensions. And I cannot 

compute the how similar king and queen are, how similar queen and child are by using 

this method. 
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So, we cannot make any meaningful comparison. We can only find if these two words 

are same, so that is not very interesting. 

(Refer Slide Time: 02:21) 

 

So, what happens in the distributional representation or so we also called it word 

embeddings that any word w i in the corpus is given a distributed representation by an 

embeddings. So, I have a fix dimension like d-dimensional vector, and I represent each 

word in these d-dimensions. And I will give them various weights and these weights are 

to be learnt by some method, and we will talk about what will be the method by which I 

will learn these weights. So, idea is that each word in my vocabulary, I will try to 

represent them in some fix dimensions d. So, this is one idea. So, like I have the word 

linguistics, and I can denote this word in some fix dimension here d is 8. So, there are 8 

dimensions. So, it has different weights in different dimensions. And similarly all the 

words will be represented similarly they have different weights in these d-dimensions. 
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So, what is my distributional representation? So, take a vector with several hundred 

dimensions, so it can be 100, 50, 300, 1000. Now, each word is represented by a 

distribution of weights across these elements. So, each vector is nothing but a 

distribution of weights across these dimensions. So, what will happen? So, instead of a 

one-to-one mapping between an element in the vector and a word, you have a distributed 

representation of each word; and by using that you can cap capture similarity. So, 

whether two words are similar or not. If they have similar weights in many dimensions, 

then they will be similar and that is how I can capture similarity between words. So, we 

can say that each element in my vector or each dimension might contribute to the 

definition of multiple words. 



 

 

(Refer Slide Time: 04:24) 

 

So, what the dimensions might indicate this is just in illustration this is not a literal 

meaning, so that is what can you can help you to understand what are these dimensions. 

So, suppose all the dimensions in my distributional representation I can label by some 

hypothetical labels. So, my algorithm may not have some labels some very good labels 

like that it may not be possible to do that even manually, but this is simply for 

understanding that. Assume that so there are d dimensions assumed that you can assign a 

label to these some topic some concept like here my dimensions can be like royalty, 

masculine, feminine, age and so on, these are my dimensions. And assume that the 

weights that each for is have in this dimensions correspond to how much that word is 

closer to that concept. 

So, for example, the word king word how much it is closer concept of royalty. So, this 

king is very close to concept of royalty it has a high weight in this dimension 0.99, it is 

very close to masculine, so it is has a high weight 0.99, but very small weight in 

feminine. Age suppose that a high weight means, it is elder, so it is 0.7. Similarly, for 

queen what will happen royalty will get a high weight yes, but masculine and feminine 

will be just opposite; and age can be again 3.6. Now, take women and princes women 

will have very low weight in the in the case of royalty high weight in the case of 

feminine. And princess will have a high weight in the case of royalty and high weight in 

the case of feminine and very low weight in the case of age. And this is simply for 

illustration.  



 

 

So, idea is that I am trying to represent all my words instead of fixed dimensions. And 

these dimensions are latent, they met correspond to certain concepts a combination of 

concepts and so on that we may not know that the algorithm also does not assign. But we 

would assume that that these dimensions correspond to some concepts, and now each 

word can be written as a distribution among these concepts. And then I can measure two 

words based on how much similar they are on various concepts, this is the idea. The 

main question is how do I capture this representation that how do I represent different 

words in this fixed dimensions. So, now we can see that so such a vector is representing 

the meaning in some abstract manor. 
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So, now what is my dimension size? So, my dimension-d can be if we starting from 50 

up to 1000. And the by focus is that the word that are similar in meaning, they should 

have similar embeddings or similar representation. Now, if you know about SVD 

singularly de decomposition that is also some sort of embedding method that converts 

the vectors in some low dimensions. So, I will encourage that you read about singular 

that valid decomposition, also another name for that is latest symmetry indexing, but I 

will just give you very briefly what is the idea of SVD. 
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So, we talked about this co occurrence matrices. So, this is my matrix A. So, these are 

the target words, these are contest words. And this matrix has certain entries. Now, what 

is one problem is matrix this might be very high-dimensional. So, each word might have 

a say 500 k-dimensional representation. So, what this is co occurrence with different 

words and these words can be age number of words can be age 500 k and even more in 

some cases. So, now I want to give a low dimension representation a distribution 

representation. So, what will the idea? So, I will use the theorem that any matrix say can 

be written as U sigma V transport, and there are certain properties of these U sigma and 

V, but this sigma is a diagonal matrix, and the entities are singular values. So, you can 

get about it what is this matrix particular decomposition for singular values. 

Now, once you have this matrix in this format, this is same matrix. So, idea is that you 

take a k rank approximation so that means, you have singular values they are arranged in 

the decreasing order and you take only the top case singular values, and you do that for 

all this U, sigma, and V. So, we have taking only top k entries. So, only the first k entries 

of U corresponding to top k singular values that is U k, sigma k, V k transports and this 

is my k rank approximation of my matrix A. So, now this U will denote my low 

dimensional representation. So, earlier U might be in the same dimensions, U can be 

again in 500 k dimension 5,00,000, but suppose you are trying to pick only 100 you will 

take only first hundred dimensions from here, and this will be a low dimensional 



 

 

representation for U, V and so on. So, SVD is also one sort of embedding. So, each word 

you can embedding some k-dimensions by taking the top case singular values only. 

But we are not talking about SVD here; we will talk about the word vector method for 

computing this representation. So, now before I discuses what are the different task 

sequence do with these word vectors, oh sorry how do you compute these word vectors, 

let us see why they are found to a very interested in this domain and what are the 

different task they have been used in. 
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So, what is we found that these representations are capturing some meaningful syntactic 

and semantic regularities in a very, very simple manner. So, what is that? So that is we 

can use the vector offsets to talk about relation between words and how much two words 

are similar compare to the other pair of words. So, for example, I want to capture the 

singular plural relationship between word like car and cars, boy and boys, bag and bags 

and so on. And suppose I do not know what are singular and plural words. So, can I 

capture that using word representation? 

So, what does we found suppose that for each vector x i for each word i, you have vector 

x i. So, we can take the vector offsets and they will be coming out to be similar for 

singular to plural pair, so that is if I try to compute x apple minus x apples that is coming 

out to be very close to x car minus x cars, similarly to x family minus x families and so 

on. That is I compute the vectors of these and if I take the vector offset apple minus 



 

 

apples has similar offsets as car minus cars as family minus families, and this is very, 

very interesting this is not something for which this vectors for trained for, but they are 

capturing this regularity very nicely. 
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So, this would be like and because they capturing such regularities they can be used for 

various reasoning task like analogy task a is to b as c is to what. So, like man is to 

woman as uncle is to and you will answer aunt, but can my model answer that man I 

have given man woman pair, and for the next pair the first word is uncle, what be the 

next word, can you find out aunt. And that is what the word vectors have you found to be 

very useful in; they can predict these analogy sort of task. And how do we do that they 

just use the simple vector offset method. 
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So, let us see one example. So, here so this is the idea. So, I have my vectors denoted in a 

two-dimensional plane. So, how do you convert any say 100 dimensional vectors to two-

dimensional representation, you can use principle component analysis PCA or some 

other methods to project them into some lower dimension, so that is been done here, two-

dimensional representation. So, what you are seeing here? So, that outside would be 

woman and man that is similar to what has been observed in uncle and aunt, and king 

and queen and this is a very nice regularity. 
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Similarly, here for singular plural king to kings and queen to queens, they are having 

similar offsets. 
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So, we can use that for analogy testing. So, what is the analogy testing task you are given 

a pair with a certain relation like France and Paris. What is the relation? So Paris is the 

capital of France. Now, we are given various examples and you have to find out which of 

this examples exhibit the same relation, so that is whether Italy, Rome has a relation of 

capital and country; Japan, Tokyo and Florida Tallahassee which of these has the same 

relation. So, can my vector representation capture this? So, a given one example can you 

find out the other example. And so similarly for big, bigger can you find out this small 

smaller, cold colder, quick quicker, and Miami Florida can you find out other examples 

so on. 
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And how do they do that. So, I have this task a is to b as c to what. So, example is man is 

to woman as king is to sorry man is to woman as king is to what. And how will they do 

that. So, simple idea is take the vector offsets between woman and man, and add it to 

king. So, find out woman minus man, add it to king, but how do you find out the word 

queen, in general it may not be the exact match. So, how do you find out what words are 

coming closer. 
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So, this is the idea. So, I have a is to b as c to what. So, what will happen in my vector 

representation a, b and c, I want to find out what is the word d. So, what will I do, I have 

the vectors of each of the words. So, I will find out the offsets w b minus w a added to c. 

Now, I am trying to find out which vectors are similar to this. I write it this and where 

what are the vectors are similar to this one. So, I will just find out similarity of that to all 

the words w i in my corpus and I can also normalize it w b minus w a plus w c, so that is 

a normalize all this is not very important and we take the argmax over all w i in my 

corpus. So, all words are vectors. So, I find out which words are coming closer in this is 

space. So, what is the closest words to by when I add this offsets to this word and that is 

my answer, for example, if you do this here, so will find that the word queen comes up. 
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And this has we shown in many different cases like country and capital vectors, China-

Beijing, Russia-Moscow, Japan-Tokyo, and the what you are seeing here the offsets 

between the vectors are very, very regular in all this cases. And this is just coming out 

from the word vectors. 
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And more questions like newspapers. So, New York and New York Times (Refer Time: 

17:12) Baltimore and Baltimore Sun, San Jose San Jose Mercury News and so on; 

various NBA teams Detroit Detroit pistons and so on; airlines - Austria Austrian airlines, 

Belgium Brussels airlines and company executives. So, what do you seeing it is 

capturing a generic relation also? In general, any relation that can hold between two 

words, so if you are finding out two words with one relation you can find out some many 

other words that I having the same relation by simple this vector offsets method. So, find 

out vector offset between pairs, is it similar to the vector offsets of my initial example. 

So, this is the problem we also tackled in the case of structured models of distribution 

semantics that is we were making the pair pattern matrix and then capturing the co 

occurrences. In the case of word vectors, even though you did not is start by pairs and 

patters, even the though you found out only with the word embeddings word vectors this 

helped further in doing this task also, and this was very one of the very interesting 

aspects. 
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Similarly, here we can do element-wise addition. So, suppose you have the embedding 

for a German, you have embedding for airlines and if you add these two embeddings, 

and find out words that are coming closer to the new vector now. And you find out some 

very interesting words coming up like here check plus currency, and you find out word 

that very close, Vietnam plus capital again words setup very close German plus airlines 

you find Lufthansa airline and Lufthansa a carrier so on, Russian plus river you find 

words like Moscow French plus actress and you find some French actress. And this was 

again some interesting aspect. So, you can have embedding of two words and you add 

these gather if find something that is some sort of composition of these term. So, it is not 

a generic method. So, this was coming out in some cases may not be true for all the 

cases, but even coming out in some cases for what in interesting observation. 
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So, now how do we capture these word vectors, how do we compute this word vectors. 

Now, basic idea is we will again go back to the co occurrences, we will trying to use co 

occurrences. But instead of counting the co occurrences from a corpus, what we will say 

I am given a sentence a word is there, and the contest is there, try to predict the contest 

from the word or the word from the contest. And if you not able to predict, try to update 

your weights, and this will be the idea. It starts with some initial vectors, using those 

vectors try to predict. From the contest, what to do the targets, after the target what will 

be the contest if it is not matching update your vectors. So, all the codes as well as the 

learned vectors are available here. So, you can actually download these and try to use 

them for many of your task also, but we will discuss how what are this word vectors in 

how to they come. 
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So, in general, there are two different variation of this models, so that tried to capture 

these word embeddings, and they are called CBOW for continues back of words model 

and skip-gram models. And let me just quickly explain what are these and we will 

discuss in details in the next lecture. So, in continuous back of words model, what you 

are doing, so, we are taking the contest. So, you are focusing on the current word w t, 

you are taking the previous words. So, it can be actually any number of previous words 

and to next words and you are trying to use those to predict the center word. So, using 

the contest predict the target word or the center word. 

In the skip-gram model, what you are doing you are using the center word and trying to 

predict the context words. So, there are two different ways of learning these embeddings. 

So, idea would be I will start with some initial vectors, now trying using the context 

vectors, I will try to predict what is my center vector. If I am not finding the match I will 

update my different vectors center as well as the context. And I will keep on doing that 

until I am able to predict this some high confidence or I am converging at certain point 

my vectors are not changing. And these vectors that I am learning by this method will be 

my word vectors and I do that slightly different in both continuous back of words model 

and skip-gram model. 

So, in the next lecture, what we will do, we will discuss in detail how do we learn these 

vectors. 



 

 

Thank you. 


