Natural Language Processing
Prof. Pawan Goyal
Department of Computer Science and Engineering
Indian Institute Technology, Kharagpur

Lecture - 34
Word Embeddings - Part |

(Refer Slide Time: 00:36)

Word Vectors

e Atone level, it is simply a vector of weights.

@ In a simple 1-of-N (or ‘one-hot’) encoding every element in the vector is
associated with a word in the vocabulary.

@ The encoding of a given word is simply the vector in which the
corresponding element is set to one, and all other elements are zero.

One-hot I'«'/!I‘('\t'llhlliull

| S S ~ . \ N 1)
mokel |ocoo o000 00001000O0]

hotel [ooo0 00001000000 O0]

Pawan Goyal (T Kharagpur) Word Embeddings - Part |

Welcome back. So, we are talking about distributions semantics. So, in this fourth lecture
and the fifth lecture of this week, we will talk about another very interesting idea that is
word embeddings that come from distribution semantics. So, what are word
embeddings? So, when | am talking about word embeddings, so they are like word
vectors. So, the word vectors are nothing but simple vectors of vectors of weight. So, we
talked about these factors. So, you are having some dimensions and they are

representation words in this set of dimensions and their various weights.

So, now we also talked about this one-hot encoding that is among the n-dimensions only
one dimension is 1, everything else as 0; and these dimension might correspond to the
index of the particular word that | wanted to be set. Now, and we saw that if | if we are
using one hot encoding | cannot compute the similarity among words. So, if I motel and
hotel, there will have one at different places, and if | compute similarity, if | do an AND,

it will be 0. So, this is not conducive to for semantic similarity between words.

(Refer Slide Time: 01:37)

Word Vectors - One-hot Encoding

@ Suppose our vocabulary has only five words: King, Queen, Man, Woman,
and Child.

e We could encode the word 'Queen’ as:

[Sliofole]l = 1-ay-w

en n,hn(‘s

So, now let us take a simple example. So, have a vocabulary that contains only five
words king, queen, man, woman and child. So, | have vectors in five dimension. So, |
can encode queen like this. So, queen has a weight of 1 in the second dimension that
correspond to the index of queen and it has weight 0 and other dimensions. And | cannot
compute the how similar king and queen are, how similar queen and child are by using
this method.

(Refer Slide Time: 02:12)

Limitations of One-hot encoding

Word vectors are not comparable

Using such an encoding, there is no meaningful comparison we can make

between word vectors other than equality testing.

Word Embeddings - Part |

So, we cannot make any meaningful comparison. We can only find if these two words

are same, so that is not very interesting.

(Refer Slide Time: 02:21)

Word2Vec — A distributed representation

Distributional representation — word embedding?
Any word w; in the corpus is given a distributional representation by an
embedding

w e R?

i.e., a d—dimensional vector, which is mostly learnt!

Pawan Goyal (1T Kharagpur) Word Embeddings - Part |

So, what happens in the distributional representation or so we also called it word
embeddings that any word w i in the corpus is given a distributed representation by an
embeddings. So, | have a fix dimension like d-dimensional vector, and | represent each
word in these d-dimensions. And | will give them various weights and these weights are
to be learnt by some method, and we will talk about what will be the method by which |
will learn these weights. So, idea is that each word in my vocabulary, | will try to
represent them in some fix dimensions d. So, this is one idea. So, like | have the word
linguistics, and | can denote this word in some fix dimension here d is 8. So, there are 8
dimensions. So, it has different weights in different dimensions. And similarly all the

words will be represented similarly they have different weights in these d-dimensions.

(Refer Slide Time: 03:26)

Distributional Representation

Take a vector with several hundred dimensions (say 1000).

Each word is represented by a distribution of weights across those
elements.

So instead of a one-to-one mapping between an element in the vector
and a word, the representation of a word is spread across all of the
elements in the vector, and

Each element in the vector contributes to the definition of many words.

pwan Goyal (IIT Kharagpur)

So, what is my distributional representation? So, take a vector with several hundred
dimensions, so it can be 100, 50, 300, 1000. Now, each word is represented by a
distribution of weights across these elements. So, each vector is nothing but a
distribution of weights across these dimensions. So, what will happen? So, instead of a
one-to-one mapping between an element in the vector and a word, you have a distributed
representation of each word; and by using that you can cap capture similarity. So,
whether two words are similar or not. If they have similar weights in many dimensions,
then they will be similar and that is how I can capture similarity between words. So, we
can say that each element in my vector or each dimension might contribute to the

definition of multiple words.

(Refer Slide Time: 04:24)

Distributional Representation: Illustration

If we label the dimensions in a hypothetical word vector (there are no such
pre-assigned labels in the algorithm of course), it might look a bit like this:

[
(R}
O

Q.7

Such a vector comes to represent in some abstract way the ‘meaning ' of a

waord

Pawan Goyal (T Kharagpur) Word Embeddings - Part |

So, what the dimensions might indicate this is just in illustration this is not a literal
meaning, so that is what can you can help you to understand what are these dimensions.
So, suppose all the dimensions in my distributional representation | can label by some
hypothetical labels. So, my algorithm may not have some labels some very good labels
like that it may not be possible to do that even manually, but this is simply for
understanding that. Assume that so there are d dimensions assumed that you can assign a
label to these some topic some concept like here my dimensions can be like royalty,
masculine, feminine, age and so on, these are my dimensions. And assume that the
weights that each for is have in this dimensions correspond to how much that word is

closer to that concept.

So, for example, the word king word how much it is closer concept of royalty. So, this
king is very close to concept of royalty it has a high weight in this dimension 0.99, it is
very close to masculine, so it is has a high weight 0.99, but very small weight in
feminine. Age suppose that a high weight means, it is elder, so it is 0.7. Similarly, for
queen what will happen royalty will get a high weight yes, but masculine and feminine
will be just opposite; and age can be again 3.6. Now, take women and princes women
will have very low weight in the in the case of royalty high weight in the case of
feminine. And princess will have a high weight in the case of royalty and high weight in
the case of feminine and very low weight in the case of age. And this is simply for

illustration.

So, idea is that | am trying to represent all my words instead of fixed dimensions. And
these dimensions are latent, they met correspond to certain concepts a combination of
concepts and so on that we may not know that the algorithm also does not assign. But we
would assume that that these dimensions correspond to some concepts, and now each
word can be written as a distribution among these concepts. And then | can measure two
words based on how much similar they are on various concepts, this is the idea. The
main question is how do | capture this representation that how do I represent different
words in this fixed dimensions. So, now we can see that so such a vector is representing

the meaning in some abstract manor.

(Refer Slide Time: 07:07)

Word Embeddings

o o typeCally In the range SO 1o 100

o Similar words should have similne ermbeddings

SVEO oan o vor e thoneg bt of v v eondseddidines e thuwd

So, now what is my dimension size? So, my dimension-d can be if we starting from 50
up to 1000. And the by focus is that the word that are similar in meaning, they should
have similar embeddings or similar representation. Now, if you know about SVD
singularly de decomposition that is also some sort of embedding method that converts
the vectors in some low dimensions. So, | will encourage that you read about singular
that valid decomposition, also another name for that is latest symmetry indexing, but |

will just give you very briefly what is the idea of SVD.

(Refer Slide Time: 07:50)

Wy | fg’;t'
‘ - 4
_“ P e
= 6“:" ?
‘A) - o)
(\lq 4 IA z s 2__‘,1-__ : doﬁm,
74{, —Tl.'?ﬂ"- app rrgf e
N T Qrgulpr
;z‘ui le 1 x '/ vl

So, we talked about this co occurrence matrices. So, this is my matrix A. So, these are
the target words, these are contest words. And this matrix has certain entries. Now, what
is one problem is matrix this might be very high-dimensional. So, each word might have
a say 500 k-dimensional representation. So, what this is co occurrence with different
words and these words can be age number of words can be age 500 k and even more in
some cases. So, now | want to give a low dimension representation a distribution
representation. So, what will the idea? So, | will use the theorem that any matrix say can
be written as U sigma V transport, and there are certain properties of these U sigma and
V, but this sigma is a diagonal matrix, and the entities are singular values. So, you can

get about it what is this matrix particular decomposition for singular values.

Now, once you have this matrix in this format, this is same matrix. So, idea is that you
take a k rank approximation so that means, you have singular values they are arranged in
the decreasing order and you take only the top case singular values, and you do that for
all this U, sigma, and V. So, we have taking only top k entries. So, only the first k entries
of U corresponding to top k singular values that is U k, sigma k, V k transports and this
is my k rank approximation of my matrix A. So, now this U will denote my low
dimensional representation. So, earlier U might be in the same dimensions, U can be
again in 500 k dimension 5,00,000, but suppose you are trying to pick only 100 you will

take only first hundred dimensions from here, and this will be a low dimensional

representation for U, V and so on. So, SVD is also one sort of embedding. So, each word

you can embedding some k-dimensions by taking the top case singular values only.

But we are not talking about SVD here; we will talk about the word vector method for
computing this representation. So, now before | discuses what are the different task
sequence do with these word vectors, oh sorry how do you compute these word vectors,
let us see why they are found to a very interested in this domain and what are the

different task they have been used in.

(Refer Slide Time: 10:53)

Reasoning with Word Vectors

@ 11 has Doon found thist the leamed word representations n fact capture
maaninglul symiachc and semanbic regudantos in a yory sample way,
¢ Spocihcally, the regutaritos aro observed as constan! vector oflsets
Datwoon palrs of words shaong a particulas ralationshp.
il Reluntiom

N weo donole the vector lor word / as «,, and focus on the singular/plural
relption, wo obsorve that

Nipyte Lan W ' L B | e L pamdd \ LN

and 50 on

So, what is we found that these representations are capturing some meaningful syntactic
and semantic regularities in a very, very simple manner. So, what is that? So that is we
can use the vector offsets to talk about relation between words and how much two words
are similar compare to the other pair of words. So, for example, | want to capture the
singular plural relationship between word like car and cars, boy and boys, bag and bags
and so on. And suppose | do not know what are singular and plural words. So, can |

capture that using word representation?

So, what does we found suppose that for each vector x i for each word i, you have vector
X i. So, we can take the vector offsets and they will be coming out to be similar for
singular to plural pair, so that is if I try to compute x apple minus x apples that is coming
out to be very close to x car minus x cars, similarly to x family minus x families and so

on. That is I compute the vectors of these and if | take the vector offset apple minus

apples has similar offsets as car minus cars as family minus families, and this is very,
very interesting this is not something for which this vectors for trained for, but they are

capturing this regularity very nicely.

(Refer Slide Time: 12:23)

Reasoning with Word Vectors

Porhaps more surpesingly, we lind that this |s also the case of a vanoty of

nomantic relalions

Coovand wr apexwering anlogy giestiomin

Aistob. asoisto ?
Man is 1O WOMIN RS LUNCK 6 10 7 {aun)

A simple vecior ofse!l melbod based on cosne distance shows the relabon

So, this would be like and because they capturing such regularities they can be used for
various reasoning task like analogy task a is to b as c¢ is to what. So, like man is to
woman as uncle is to and you will answer aunt, but can my model answer that man |
have given man woman pair, and for the next pair the first word is uncle, what be the
next word, can you find out aunt. And that is what the word vectors have you found to be
very useful in; they can predict these analogy sort of task. And how do we do that they

just use the simple vector offset method.

(Refer Slide Time: 13:03)

Vector Offset for Gender Relation

WOMAN

MAN/ /

UNCLE

AUNT

QUEEN

KING

So, let us see one example. So, here so this is the idea. So, | have my vectors denoted in a
two-dimensional plane. So, how do you convert any say 100 dimensional vectors to two-
dimensional representation, you can use principle component analysis PCA or some
other methods to project them into some lower dimension, so that is been done here, two-
dimensional representation. So, what you are seeing here? So, that outside would be
woman and man that is similar to what has been observed in uncle and aunt, and king

and queen and this is a very nice regularity.

(Refer Slide Time: 13:39)

Vector Offset for Singular-Plural Relation

QUEENS
L3

'\ /ou:m

KING

Similarly, here for singular plural king to kings and queen to queens, they are having

similar offsets.

(Refer Slide Time: 13:48)

Encoding Other Dimensions of Similarin

So, we can use that for analogy testing. So, what is the analogy testing task you are given
a pair with a certain relation like France and Paris. What is the relation? So Paris is the
capital of France. Now, we are given various examples and you have to find out which of
this examples exhibit the same relation, so that is whether Italy, Rome has a relation of
capital and country; Japan, Tokyo and Florida Tallahassee which of these has the same
relation. So, can my vector representation capture this? So, a given one example can you
find out the other example. And so similarly for big, bigger can you find out this small
smaller, cold colder, quick quicker, and Miami Florida can you find out other examples

SO on.

(Refer Slide Time: 14:42)

Analogy Testing

— f = AT TIRAX
"

king [0;00 70) 2 ' een
man [0.200.20])
womsn [0.600.30)

queen [0.700.80])

And how do they do that. So, | have this task a is to b as ¢ to what. So, example is man is
to woman as king is to sorry man is to woman as king is to what. And how will they do
that. So, simple idea is take the vector offsets between woman and man, and add it to
king. So, find out woman minus man, add it to king, but how do you find out the word
queen, in general it may not be the exact match. So, how do you find out what words are

coming closer.

(Refer Slide Time: 15:20)

So, this is the idea. So, I have a is to b as ¢ to what. So, what will happen in my vector
representation a, b and c, 1 want to find out what is the word d. So, what will I do, I have
the vectors of each of the words. So, | will find out the offsets w b minus w a added to c.
Now, | am trying to find out which vectors are similar to this. I write it this and where
what are the vectors are similar to this one. So, | will just find out similarity of that to all
the words w i in my corpus and | can also normalize it w b minus w a plus w c, so that is
a normalize all this is not very important and we take the argmax over all w i in my
corpus. So, all words are vectors. So, | find out which words are coming closer in this is
space. So, what is the closest words to by when | add this offsets to this word and that is

my answer, for example, if you do this here, so will find that the word queen comes up.

(Refer Slide Time: 16:45)

Country-capital city relationships

And this has we shown in many different cases like country and capital vectors, China-
Beijing, Russia-Moscow, Japan-Tokyo, and the what you are seeing here the offsets
between the vectors are very, very regular in all this cases. And this is just coming out

from the word vectors.

(Refer Slide Time: 17:06)

More Analogy Questions

Newspapers
‘ Baltimore Baltimore Sun

New York Times
San Jose Mercury News
NHT Teams
Boston Boston Bruins I Montreal Montreal Canadiens |
Phoenix Phoenix Cor ‘ Nashville Nashville Predators ‘

Cincinnati Cincinnati Enquirer

yoles
NBA Teams
Detroit Detroit Pistons | Toronto Toronto Raptors "

Oukland Golden State Warriors ‘ Memphis Memphis Grizzlies
Airlines ‘

Austria Austrian Alrlines | Spain
Helgium Brussels Airline \ (ireece Acgean |
Company executiv |
Steve Ballmer Microsoft I arry Page Google

Samuel J, Palmisano IBM emer Vogels Amazon \

Table 2: Examples of the analogical reasoning task for phrases (the full test set has 3218 examples)
T'he goal is to compute the fourth phrase using the first three, Our best model achieved an accuracy
of 72% on this dataset

Pawan Goyal (T Kharagpur) Word Embeddings - Part | Week 7, Lecture 4 16719

And more questions like newspapers. So, New York and New York Times (Refer Time:
17:12) Baltimore and Baltimore Sun, San Jose San Jose Mercury News and so on;
various NBA teams Detroit Detroit pistons and so on; airlines - Austria Austrian airlines,
Belgium Brussels airlines and company executives. So, what do you seeing it is
capturing a generic relation also? In general, any relation that can hold between two
words, so if you are finding out two words with one relation you can find out some many
other words that I having the same relation by simple this vector offsets method. So, find

out vector offset between pairs, is it similar to the vector offsets of my initial example.

So, this is the problem we also tackled in the case of structured models of distribution
semantics that is we were making the pair pattern matrix and then capturing the co
occurrences. In the case of word vectors, even though you did not is start by pairs and
patters, even the though you found out only with the word embeddings word vectors this
helped further in doing this task also, and this was very one of the very interesting

aspects.

(Refer Slide Time: 18:27)

Element Wise Addition

Wo can akso use slomant wise addition of voctor olomonts 10 ask quostions
such an 'Gorman + arines’ and by looking al the closast lokenas (o thwe

COMPORLAn YOCior cCome Up WHN IMmEnessve answors

Similarly, here we can do element-wise addition. So, suppose you have the embedding
for a German, you have embedding for airlines and if you add these two embeddings,
and find out words that are coming closer to the new vector now. And you find out some
very interesting words coming up like here check plus currency, and you find out word
that very close, Vietnam plus capital again words setup very close German plus airlines
you find Lufthansa airline and Lufthansa a carrier so on, Russian plus river you find
words like Moscow French plus actress and you find some French actress. And this was
again some interesting aspect. So, you can have embedding of two words and you add
these gather if find something that is some sort of composition of these term. So, it is not
a generic method. So, this was coming out in some cases may not be true for all the

cases, but even coming out in some cases for what in interesting observation.

(Refer Slide Time: 19:22)

Learning Word Vectors

Basic ldea

Instead of capturing co-occurrence counts directly, predict (using) surrounding
words of every word.
Code as well as word-vectors: https.//code.google.com/p/word2vec.

Pawan Goyal (IIT Kharagpur) Word Embeddings - Part | Week 7, Lecture 4 8719

So, now how do we capture these word vectors, how do we compute this word vectors.
Now, basic idea is we will again go back to the co occurrences, we will trying to use co
occurrences. But instead of counting the co occurrences from a corpus, what we will say
| am given a sentence a word is there, and the contest is there, try to predict the contest
from the word or the word from the contest. And if you not able to predict, try to update
your weights, and this will be the idea. It starts with some initial vectors, using those
vectors try to predict. From the contest, what to do the targets, after the target what will
be the contest if it is not matching update your vectors. So, all the codes as well as the
learned vectors are available here. So, you can actually download these and try to use
them for many of your task also, but we will discuss how what are this word vectors in

how to they come.

(Refer Slide Time: 20:26)

Two Variations: CBOW and Skip-grams

N
v

chow AR giam

So, in general, there are two different variation of this models, so that tried to capture
these word embeddings, and they are called CBOW for continues back of words model
and skip-gram models. And let me just quickly explain what are these and we will
discuss in details in the next lecture. So, in continuous back of words model, what you
are doing, so, we are taking the contest. So, you are focusing on the current word w t,
you are taking the previous words. So, it can be actually any number of previous words
and to next words and you are trying to use those to predict the center word. So, using
the contest predict the target word or the center word.

In the skip-gram model, what you are doing you are using the center word and trying to
predict the context words. So, there are two different ways of learning these embeddings.
So, idea would be | will start with some initial vectors, now trying using the context
vectors, | will try to predict what is my center vector. If | am not finding the match 1 will
update my different vectors center as well as the context. And I will keep on doing that
until 1 am able to predict this some high confidence or | am converging at certain point
my vectors are not changing. And these vectors that I am learning by this method will be
my word vectors and | do that slightly different in both continuous back of words model

and skip-gram model.

So, in the next lecture, what we will do, we will discuss in detail how do we learn these

vectors.

Thank you.

