

Natural Language Processing

Prof. Pawan Goyal

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 29

MST - Based Dependency Parsing

Welcome back for the fourth lecture of this week. So in the last 2 lectures we had

discussed a particular (Refer Time: 00:26) dependency parsing that was a transition

based parsing method. And we had discussed how we can formulate parsing as a

particular problem where we starting with an initial configuration and moving from one

configuration rather by using various transitions. And we modeled or learned these

transitions using some training data that we already had. So this was a data driven

approach.

Now, in this lecture we will talk about another data driven approach here. So the one

main difference from the previous one is that we do not assume that projectivity

constraint over the dependency graph. So in the last method that we had covered we

were assuming that the dependency graph that we want should be projective although

later on there are some variations proposed where this constraint is not required. So you

might if you want to look into those.

So coming to what we are going to discuss in today’s lecture and in the next lecture. So

this is the approach using where we are formulating dependency parsing as a problem of

finding maximum spanning tree.

Now, what is the basic idea? So we are starting with the sentence that is given to me. So

this is the sentence for which I want to find the dependency graph. And how do we

formulate the problem. Firstly, think about the sentence as a set of nodes these are the

words and assume that all the possible nodes are connected to each other. We will also

include additional node called root so that we can find out what is the main head of this

sentence now. Once we start by assuming all possible connections my problem is to find

out what is the maximum spanning tree from this all the connections that I can build.

And this I would assume corresponds to my dependency graph. And the weights etcetera

that will define for this graph will be learned by using some training data that will be

available to me.

(Refer Slide Time: 02:35)

So the main idea here is I am given a dependency graph. So I start with a sentence John

saw Mary. And I assume an additional node like root. Assume that initially everything is

connected. So from root there are all possible connections to all that node. And each

node has an incoming and an outgoing edge with respect to every other node. How do we

learn these edge weights? This is something that we will discuss, but assume that the

weights are already given to you. Now your problem would be how do I find out what is

the maximum spanning tree from this graph. And this suppose this is the maximum

spanning tree then this is what I will assume corresponds to my dependency graph. So

my problem is starting from here to come up with the maximum spanning tree that might

be dependency graph.

(Refer Slide Time: 03:24)

So now starting with some simple reminders from graph theory on what is a maximum

spanning tree. So you are now familiar with what is a graph. So when I say graph this is

a set of V that is set of vertices and A set of arcs. So arcs generally connect to different

nodes in the graph. So arc is connecting to nodes i and j both i and j are in the set V.

Now if I talk about undirected graph like the figure on the left. So if I say that i and j are

in the set of arcs then j and i are also there is no directions in this in this set of arcs.

But if I see that my graph is directed. Then if i and j are in the set of arcs then j and i may

not be in the set of arcs. Like here I have a connection from this node to this node, but no

connection from this node to this node.

(Refer Slide Time: 04:26)

So what is a simple graph and what is a directed graph? Directed graph can also be

written as a digraph. Now we can also see what is a multi-digraph. A multi digraph what

would happen between a set of vertices? There might be more than one possible arc.

Like here you are seeing between this node and this node there are 3 different arcs. So

that is why you will have an additional index saying i j and k between the nodes i and j

what is the kth arc. So it is similar to the previous one except that between 2 vertices you

can have more than one arc.

(Refer Slide Time: 05:12)

Now, once we know what is a multi-digraph, let me define the notion of what is the

directed spanning tree of the multi digraph. So once I start with the multi digraph that is

set of nodes V and there is a sub graph G prime that is some V prime a prime is called a

directed spanning tree if the following conditions are followed. What are the conditions?

In the directed spanning tree, the number of the set of nodes are the same as the set of

nodes in the original graph.

So I will have to take the all the nodes from the original graph. So now, what do I do

with the edges? So the set of arcs that I take in G prime is the subset of the original set of

arcs with the constraint that the number of edges that I have now is equivalent to number

of nodes minus 1 and the third condition is the graph G prime is a tree. It is there is no

cycle in the graph. So let us take example.

So I have 2 different multi digraphs that are given in the first and second figure. And you

are being shown a directed spanning tree for this multi digraphs. So what do you see

here? So it has the same number of nodes as were there in the original multi digraph and

what about the number of connections. So you see there are 1 2 3 4 and 5 connections

and number of nodes are 1 2 3 4 5 6. So number of connections are exactly number of

nodes minus 1. And you can take any possible any possible 5 connections in among

these nodes such that there is no cycle and we called a directed spanning tree.

(Refer Slide Time: 07:14)

Now, once we know what is directed spanning tree we can also define what is a weighted

directed spanning tree. So here what we will do? In my graph with all the arcs I will also

associate a weight. So each arc is now labeled or weighted by some numerical value and

this I will call at wijk for the i between the vertices i and j what is the weight for the kth

arc. So in w ij superscript k is the weight of the edge i j k. Now I will also define what is

the weight of my directed spanning tree. So this will be simply summation over the

weights of all the edges in my directed spanning tree. So from my multi digraph i find a

directed spanning tree definition was already covered in the previous slide.

Now, whatever edges I am obtaining I will find out the weights for each of these and

sum over them. And that will define the weight of my directed spanning tree. Now the

idea here is for a given starting from a given multi digraph you can obtain a number of

different directed spanning trees. So your problem is to find out which of these has the

maximum weight. So now, I by this concept of weighted spanning tree I have also define

what is the weight of the directed spanning tree. So now, among all the possibilities I

will find out the one that is having the maximum weight.

(Refer Slide Time: 08:47)

So it is starting from the graph G let us say T G is the set of all the possible spanning

trees that I can obtained. So like this is this is an example this multi digraph is given and

there are these 4 possible spanning trees. So these are all directed spanning trees. Now I

have to find out which of these has the maximum weight. So this is my MST problem.

Finding the spanning tree G prime of the graph G that has the maximum weight and the

weight is written simply as summation over the weights of all the edge of that graph. So I

find out all the edges of that graph, sum over the weights and that will give me the

weight of the final graph.

So now my problem is from my sentence, whenever I construct a multi digraph that is all

the possible connections, a fix set of directed spanning trees are possible. Now among

those which is having the highest weight and that is the one that I will say as my

dependency graph. So now, there are many questions like how do I convert a sentence to

an initial configuration. Analogous to what we did in the previous method. Then the

important problem here is how do we define the weights of my edges. And once I define

the weights how do I choose the maximum spanning tree. So these are 3 different

problems and then that is what we will be studying in this lecture and in the next.

(Refer Slide Time: 10:25)

So now for the sentence how do I find the maximum spanning tree? So let us see this is

the first problem how do I convert the sentence to the initial configuration from where I

can start, so what is that? For each sentence x you define the directed graph Gx as Vx Ex

that is given by Vx contains and additional load like root and all the all the words that

occur in my sentence x. And what are my edges I have all possible edges except for the

same node I do not have any self-edge from the node to itself.

But I have edges from every node to every other node except that the word the root node

will not have any incoming edges. That is why it is written here the edges are from the

node 0 to n to one to n 0 denotes the root node from root there are only outgoing edges

and for every other node they have both incoming edges and outgoing edges. So that is

my Gx is a graph, where the sentence words and the dummy root symbol are the vertices.

This is my set of vertices and there is a directed edge between every pair of distinct

words yes that is what we have seen here. And a directed edge from the root symbol to

every word from 0 to 1 to n this is my initial graph.

(Refer Slide Time: 11:54)

So now from a sentence I can construct this initial graph. And assume that I have some

method of finding out what are the weights of my edges. We will discuss this this

problem in the next lecture how do I find the weights, but for now let us assume that we

have some method of finding the weights of my edges. So I obtain a multi digraph now

my problem is how do I find the MST of that multi digraph. And for that we use a very

famous algorithm called Chu Liu Edmonds algorithm. And that is the very simple

algorithm as well.

So let us see what this algorithm does. So very simple steps each vertex in the graph

greedily selects the incoming edge with the highest weight. So for each vertex in the

graph I have incoming edges from every other node. So what we will do in the first, what

I will do in the first step? For each node I will select the incoming edge with the highest

weight. So now, I will now consider only those edges that have been selected. I will see

whatever graph is resulting is it a tree or not. If it is a tree it has to be a maximum

spanning tree. Because each node as related the maximum incoming edge. Now the

problem is if whatever you obtain is not a tree. If this is not a tree; that means, there has

to be a cycle.

Now, if this is a cycle then, there is a step that says you contract the vertices that are

involved in the cycle in a single vertex. Now recalculate the incoming and outgoing

edges for all those, for this new vertex that I have constructed, rerun the algorithm that is

again for each vertex choose the edge with the highest incoming edge. Again see if the if

whatever you have finding is a tree or not. If it is a tree you stop otherwise, you continue.

And you can see that you will converge at some point. Why because at every step I either

finding a maximum spanning tree. So I mean stopping or I am finding a cycle. If I am

finding a cycle I will contract the vertices so; that means, it will reduce the number of

vertices that I have in my tree. So it at some point I will have only one vertex. So that

that is the point I will have to stop anyway. So this will converge. So now, again here are

many questions like how do I compute the weight for the incoming arcs and outgoing

arcs.

(Refer Slide Time: 14:28)

So let us see by an example. So I take the same sentence that we discussed in the

previous method also the simple sentence John saw Mary. And I also know what is the

dependency graph that I want to obtain. Now how do I start mounds algorithm. So let us

see the first thing, would be I start by taking all these 3 words as my nodes plus root as

an additional node. So here we have root John saw and Mary, has 4 different nodes. Next

you make an edge between every 2 nodes in the graph.

So from root you will have only outgoing edges from root you have an edge to saw to

John and to Mary and for every other pair of words you have an incoming and outgoing

edges. So from saw to Mary and Mary, to saw, saw to John, John to saw and so on. And

there are some edge weights and we are not bothering right now and how do we achieve

these edge weights. So let us see I am given the sentence, I have some way of finding the

edge weights and I complete I construct this initial multi digraph.

Now, once I have this this digraph what is the next step of my algorithm? The next or the

very first step says that each node in the graph chooses the edge with the maximum. So

chooses the incoming edge with the maximum weight simple. So there are only 3 nodes

here that are having incoming edges. So let us see what is the edge that I will choose. So

saw has incoming edge of weight 10 20 and 0. So it will have to choose there is with

weight 20. Similarly, John has incoming edge of weight 9 30 and 11. So it will choose

the one with weight 30 and Mary has 30 - 9 and 3, so it will choose 30 and then I will

remove all the other edges, so I have, I will have only 3 edges in my graph.

Is this is this does the qualifier for the maximum spanning tree or the directed spanning

tree. It satisfies the first tree first 2 conditions, number of nodes will be same as the

original graph and number of edges will be one less than the number of original nodes in

the graph. So I will now have 3 edges, one for each node as the incoming edge, but that

condition is there should not be any cycle. So let us see do we get a cycle or do we get a

tree.

(Refer Slide Time: 16:55)

So if I do that I will get a graph like this. Because saw selects this edge, John select this

edge and Mary selects this edge. So what are you seeing here if there is a cycle? So I find

a cycle here from John to saw and saw to John so; that means, so I am not done yet I

have to now continue my algorithm. So what was the next step? Whenever I find a cycle

I contract that I make a single vertex.

(Refer Slide Time: 17:29)

So now I have a root node, then John saw Mary. So what do I have found till, now 20 30

30. This is not a tree it is a cycle. So what is the next step? I will take it; I will contract it

into a single vertex. So there is a word j and s let us let us call it wjs this is a single

vertex now.

And I will have to repeat my algorithm. For repeating the algorithm, I should know to

this vertex or to this new vertex w j s, what are the incoming and outgoing edges from all

the nodes. So there are 2 nodes now, so root and Mary. So from root it will have an

incoming edge from Mary it will have incoming edge as well as outgoing edge. So

question is how do I compute the incoming and outgoing weights from this vertex and

for that we have some very different tools. How do I compute the outgoing edge weights

and how do I compute incoming edge weights? So let us see how many I have to

compute, I have to compute this weight 1 I have to compute. So now, let us forgot about

this edge I have to compute weight 2 and I have to compute weight 3 yes. And root to

Mary will be already there that will not change, yes. So I have now 1 2 3 edges 3 vertices

only and I have to compute these edge weights. So how do I do that?

(Refer Slide Time: 19:48)

So if not a tree, you have to identify the cycle and contract that and you have to

recalculate the arc weights into and out of the cycle. And what is the algorithm for doing

that.

(Refer Slide Time: 19:58)

So algorithm is that for outgoing arc weights. You take the arc weights that are equal to

max of outgoing arcs over all vertices in the cycle, what do I mean by this. So here is my

contracted vertex John, and saw I want to compute the outgoing arc weight from this

vertex to Mary yes. So this will be equal to the max of outgoing arcs from John to Mary,

and saw to Mary. Which of these gives me the maximum will be final weight.

So here let us see. From John to Mary and saw to Mary; so John to Mary I have a weight

of 3. And saw to Mary I have a weight of 30. So among these highest is 30. So I will

pick the one with 30. And this is the final graph that is being shown. So from this vertex

the outgoing edge to Mary will have a weight of 30. And that the only outgoing edge for

this contracted vertex this is fine. Now how do I find out the weight for the incoming

arcs? So incoming arcs are from root as well as from Mary yes, so from incoming arc the

algorithm is different I do not choose the now. So I have to find out from root to this

vertex. So I do not directly choose the one that is having the maximum. So what I do? I

have to also consider this the edges inside the tree.

(Refer Slide Time: 21:44)

So what I will do? I will take the incoming arc weights as equal to the weights of the best

spanning tree that includes the head of the incoming arc and all the nodes in my cycle.

So what do I mean by that.

So let us take from root from root. There are 2 different ways of defining incoming arc

weights, either it has to be root to saw and saw to John or root to john, John to saw.

These are the 2 possible trees. So what I will do, I will find out the weight for individual

trees and take which one is having the maximum weight. So let us say root to saw, saw

to john. This is 10 plus 30 40 root to john, John to saw, this is 9 plus 20, 29. So I will

take the weight as 40 and that is the edge weight from root to saw. This is having the

weight of 40.

Now, can you compute the weight from, Mary to this vertex again I will see the 2

different ways Mary to saw, saw to john. So this is 0 plus 30. Choose this 30, second is

Mary to John, John to saw and that is 11 and 20 31. So I have 2 ways 30 and 31. So I

will choose one with 31. So it is starting from Mary to John and John to saw. So now,

once I have computed all these weights I have now got the new tree on which I have to

compute my algorithm. So here what did you find? This weight is equal to 40 this weight

we found to 30 and this weight we found as 31 and this first (Refer Time: 23:38).

So now, once I have found these weights, what is the next step? I will have to see if each

vertex now selects the incoming arc with the highest weight do we obtain a tree. So let us

see, for this vertex incoming arcs are 40 and 31. So it will choose this arc for this vertex

9 and 30. So we choose this arc. So what is my, what is the graph that I am seeing. So let

me color only the edges by this. So one edge is here and the second edge is here yes. So

do you see it is a tree? It is a tree and this is directed spanning tree.

So am I done? So as one point I am done because there is no cycle. So I do not have to

repeat my algorithm, but I still have not the optimal dependency graph. Why? Because I

am now stuck with an edge from root to this contracted vertex and I do not know what

happens inside. And I know there is an outgoing edge from this contracted vertex to

Mary again I want to know what happened inside. So how do I construct my full graph

and for that you have to go back to how you actually constructed these connections for

this contracted vertex.

So what you will do? So the incoming edge from root to John and saw and the outgoing

edge from John saw to Mary. So let us see how did we compute the outgoing edge. We

said the outgoing edge should be the maximum of both the outgoing edges. So from John

to Mary and from saw, saw to Mary and where did these come from this came from saw.

So I will now see here this edge from saw to Mary that may write it 30. So this is done.

So this outgoing edge is from saw not from john. That is how we found it out.

Now it is about the incoming edge. This is an incoming edge could have been from saw

then John or John then saw. In our algorithm where did it come from? 40, so it came

from root to saw and saw to John yes. So I have to construct now root to saw, saw to

John. So root to saw and saw to John this was 10 and this was 30. And that is my final

MST that is my dependency graph. So this is the algorithm.

(Refer Slide Time: 26:57)

So let us see again here. So you are at this step where you have this contracted vertex and

you found out the maximum incoming edge for each vertex and you obtain a tree. So

now, you have to go back after your recursive call and we construct the original graph.

And there you have to find out where is this outgoing edge coming from is it coming

from saw or John, and you found it is coming from saw incoming edge is it coming for

this tree, or that is root to saw, saw to John or root to John, John to saw and that you can

again find out where did you find this 40, it was from root to saw, saw to John.

(Refer Slide Time: 27:34)

 So yes the edge from wjs to Mary was from saw. So we construct that the edge from

root to w j s, represents a tree from root to saw, saw to John and that is your dependency

graph. So now, there might be a question in your mind that in my algorithm I have

different ways of computing incoming arc weights and as well as outgoing arc weights

they are not the same. So we need them to be different. So that we can also account for

the weight for the connection inside the tree, but the question is can I reverse this, that is

can I say that the outgoing weight should be the maximum of the directed spanning tree

and the incoming weight should be the maximum among all the possible incoming

weights. So I would like you to think about it, but I can give you basic intuition that why

this is the case.

(Refer Slide Time: 28:40)

So let us see. So suppose I have a contracted vertex that has nodes word 1 and word 2.

So right now what we are doing? We are saying the outgoing weight is max of to a

vertex like w 3 it is a max of these 2. So we take the max here. Suppose there is another

word x w 4. I will do the same the outgoing weight from here to w4 is the max of these

2.

Now when I have taken the max here and I am done my with my call and everything,

each vertex will choose only one incoming edge weight. So w 3 will choose either this or

this w4 will choose either this or this or anything else. So that means, I will know for

sure whether this there is connection from w 2 to w 3 or w 1 to w 3 or there is no

connection. And whatever I obtain even if I say that from w1 suppose my finally, I find

out a situation like this that is from w 1 there are both the connections are there this is

valid. From a because from a single node you can have 2 different outgoing edges, this is

fine. Or if w 1 and w 2 that is also, in no case there will be a there will be 2 incoming

edges for the same node this is not allowed by the algorithm itself.

Now, suppose I change my algorithm, and say that the outgoing edge is coming from the

directed spanning tree. So that will be the situation where I will have to see. So this edge

is the max of w 1 to w 2 to w 3 and the other one that is w 2 to w 1 to w3, yes. Similarly,

this will be the max of w 2 to w 1 to w 4 and w 1 to w 2 to w 4. Now what might

happened that in your final tree, that you obtain you find out this edge yes and this edge.

Now, you have to go back and construct your tree. So what you will see there, you will

see that this edge is coming from by following this connection, and this is coming by

following this connection. So you will end up by saying there is a cycle inside. And this

will not terminate again you can also try to see what will happen in the case of. So this is

only for the outgoing edges. So you see there might be a case where you can end up

finding a cycle or may not be able to say which of these 2 is the correct sign between the

edges. So this case might happen this will never arise in the way we have define the

algorithm.

Similarly, you can try for the incoming edges. Would you end up with the situation

where you are either violating some principle of the dependency graph or where you are

getting the cycle and you are not able to converge? This is something I will say that you

try to take both the cases and see whether you are finding why the algorithm proceeds in

this way of for finding the incoming and outgoing edge weights.

So we discuss this algorithm of Chu Liu Edmonds and how do we use that for finding

maximum spanning tree. So what we did not cover is how do we find the edge weights.

And that is where the learning algorithm comes in that how do we find the edge weight

from my dependency graph. And that is what we will see in the next lecture.

Thank you.

