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Transition Based Parsing: Learning 

 

Welcome back for the third lecture of this week. So, in the last lecture, we had defined 

what is the notion of our transition based parsing. And we saw what are the configuration 

that I should have what are transitions I can take and how do I come up with a final 

dependency graph. And we took an example and showed what are the transitions you can 

take and how you should be taking the transitions. And then we ended with saying that 

how I will be using that for getting parse for a new sentence. So, this is something that 

we had initially asked. 

 (Refer Slide Time: 00:58) 

 

So, I have some sentence S, S I can find out what initial configuration is why the 

function. I keep on taking some transitions go to some intermediate configuration until I 

obtain terminal configuration. And I said with the data I will have some sentences and 

their corresponding dependency parsing. And from there I will try to learn what are the 

operations of transitions I am where to take. Now, in this lecture we will see for a 

particular problem how we will be doing the learning part. 
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So, again let me start by giving you the basic intuition. So, what will be the basic 

intuition? So, in the last lecture, you had learned that for a sentence if you know the 

dependency graph so this is my labeled data, if you know that, you can run through the 

steps very, very easily, the steps of transitions. So, you can say that this is my initial 

configuration. And you should find out what is the transition I should take, say it is shift. 

So, you can store somewhere, this my initial configuration C 0 and this is the transition. 

Then by taking this transition, you will go to some other configuration C one, what is the 

transition it may be left-arc again some C 2, it can be shift and so on, some C m, it can be 

shift or something. 

So, this given a sentence, you can easily run through these steps and find out. And what 

is this C i? C i is nothing but a some words in stack, some words in buffer and something 

in my arc that is my C i. So, that means, suppose I am given a set of sentences and their 

dependency graph, I can store all the possible set of configuration and all the possible by 

all the possible I mean whatever I obtaining from these sentences and their 

corresponding transitions. And this I can have a last set. So, I will have a set of all 

possible C i and that optimal transition that I should be taking and C i’s of this form 

something in stack and something in buffer something in arc. 

Now, what is my problem at run time? At run time I am given a sentence S, I do not 

know its dependency parse. So, I start my transition, I converted to some initial 



configuration C 0 that is easy we have the function of converting to initial configuration. 

There I have to find out what is the transition I should take. Now, what will be the idea? I 

will try to use this set of data that I have. I know for what configurations, what 

transitions word taken in my gold standard or in my set of labeled data set. So, I will try 

to find out. So, before going into what this is the machine learning approach, we will use, 

so what will be intuitive idea try to find out what are the closest configurations in the set; 

And for those closest configurations, what transition was taken and I will try to use that t 

star from there. 

Suppose I find out the t star is the transition that was taken to the closest configuration 

here. So, I will use t star. And once I know this t star, I can transit it to next one C 1; 

again the question will come what is the transition I should take. So, again go back to 

this and choose t dash, take this go to C 2 keep on doing that until you will come up with 

the final configuration C m, and that is why you say this is the dependency graph for S. 

And this is the intuitive idea. In the last lecture, we have seen how do come up with this 

set. And today we will see, how do I approach this problem, so that I can come up with 

this function that what is the closest configuration from here to here, what is the 

transition that I should be taking. 

So, one important idea that we had already discussed earlier in this course is that for 

example, how do you find out the closest configuration, and what is the transition that we 

are taking. This you have to use by using some sort of classifier that is you are trying to 

classify for a given configuration among all the four transitions which transitions will be 

taken. So, you are treating it as a four class classification problem; at each point you are 

trying to classify among one of the four classes. And how are you going to classify? You 

have to convert your input data in some representation. So, this will be using some 

feature representation. So, you will have to convert your configuration into some sort 

features, feature vector. And for those features, you have to learn the weights. And this 

weight you have to learn by the training examples again. And once you have learn the 

optimal weights, you can find out what is the transition at any given point and this is 

what we will be discussing in this lecture. 
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So, let us see. So, now we are talking about the data driven deterministic parsing. So, I 

have written here certain things like deterministic parsing requires in oracle. What do I 

mean by oracle? So, oracle is nothing but the set of configurations, and the set of 

transition that I took. So, this you have already seen in the last lecture, how do you find 

out configuration and transitions. Now, what we are going to do? We want to 

approximate it by a classifier. So, we will be learning classifier from there, and it will be 

trained using the treebank data. So, whatever data we have in the gold standard label 

data, we will use that to train our classifier also. So, you will use that label data for two 

different tasks; first for building the oracle configuration, transition, configuration, 

transition; second to learn the weights of my classifier. 

Now, what is the learning problem? Now, as we said we will be given a configuration as 

an input and we want to find out what is the transition I should be taking at a particular 

configuration. So, ideally I want to approximate the function that takes a configuration 

which is represented by a feature vectors, two transitions - so configuration to transitions. 

Here configuration is nothing but a feature vector form, because otherwise how do you 

compare between two configurations, so that is why you will take give it a very abstract 

representation in terms of some feature vector form. And you will learn a function from 

feature vector to the optimal transition, and this will be your classifier. And how will you 

learn that you will be given a training set of gold standard transition sequences that we 

already have seen. 



So, now to completely solve this problem or to completely understand this problem there 

are three issues that you need to understand. First is how do I represent configuration by 

a feature vector. Second, how do I derive training data from my treebanks, and third is 

how do I learn my classifiers. So, let us try to answer each of these three questions. So, 

how do I represent configuration by feature vectors, and this is something that we had 

done earlier in the class that how do I convert a given state or represent to a feature 

vector. 
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So, what is my configuration? My configuration is nothing but a stack, buffer and arcs. 

And I want to convert that to some feature vector. And feature vector again here we will 

take it a very simple form like f c, t, it is a function over the configuration and the 

transition. And we will try to define features independent of transition, so each feature 

that we define can have four copies four, four different transitions, so f c t 1, f c t 2, f c t 

3, f c t 4 like that. So, what are the different things that I can use in feature? So, I can use 

things like what is the word at top of this stack, what is the word at top of buffer, they are 

very important, what is the word here. 

Then I may want to use what is the part of speech tag of these words, because sometimes 

some relations would might directly dependent on whether it is a verb and it is a noun 

then there might be a relation otherwise not. So, I might use the part of speech tag. I 

might go to the lemma; I might want to use what is the distance between this word and 



this word in the actual sentence. I might also want to use what are neighbors here; I 

might want to use what are relations that I have already been established with this word 

or this word, so that means I will define certain conditions over stack, buffer and arcs 

and that will I would like to take my features. And again these can be some binary 

questions that I am asking. So, that is the distance between these two words between 2 to 

5, yes or no. So, like that these can be my condition that is my features, and I will define 

it for all the four transitions. 
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So, let us look at what are the different feature models we can take in general. So, I am 

representing configuration c by a vector of simple features. So, like I can use the nodes. 

So, what is the top of this stack, what is the head of buffer, I can use the linear context 

that is what are the neighbors in s stack of the top word, what are the neighbors in buffer 

of the top word. Then I might also use what are the parents, children, siblings depending 

on what relations are already been established in my set of arcs. 

Then I can go to some other attributes like I can use the word form, I can use also its 

lemma. And we can use them up part of speech tag and various other features for 

example, is the word on top of stack ends with ed or ing things like that. And I might be 

able to use the dependency type if I am handling a labeled dependency problem. So, just 

a word what do I mean by labeled dependency problem that means, I also want to find 

out for two words what is the dependency relation label. And if I am solving unlabeled 



problem that means, I want to just want to establish a relation, but I am not concern with 

the actual dependency type. 

So, I am not worried about putting the label on the arc, but just the structure of the tree. 

So, if I am solving label problem, I might also have to see what is the relation type that I 

am establishing. And we will also see the distance between different tokens as one of the 

features. So, these are some typical examples, but it does not mean that you are limited 

only to using this set of features. And as I keep on seeing for your particular task, you 

might have to think what might be some interesting features that you can use. So, by 

using all these features, I am putting my binary questions, I can represent my 

configuration as in terms of a feature representation. So, this is my first question. Now, 

what was the second question? 
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Now, how do I use this at run time, but actually find the parse of the sentence; idea 

would be something like that. So, let me start from here. At run time, you are given a 

sentence w 1 to w n. And you can always go to the initial configuration, where the s 

stack is empty, buffer contains all the words and arc is empty. Now, this is your 

configuration and you are in a loop while the buffer is not empty, you keep on taking 

some transitions. Now, this is the task say run time, so this configuration c you know 

how to covert to the to a feature vector because you are defined your features. So, you 

can ask the questions at this point and find out your vector f c, t. 



Now, what is my classifier? My classifier is simple. I have learned the weights of my 

features assume that I have learned, we will see how to learn the weights. So, once I have 

learned the weights of my features, I will multiply the weights with f c, t and find out 

what is the particular transition that is giving the maximum value that means, I know 

what is my f c, t feature vector, and I know this is my f c, t and this is my weights. So, 

now at run time, I am given a configuration c and I need to find out what is the optimal 

transition how do I do that. An idea is that I will multiply w with f c, t i for all the four 

transitions. So, t i is shift, left-arc, reduce and right-arc. And I will take which one gives 

the maximum value argmax over t i. 

So, at run time, any configuration, I can convert to f c, t very easily. I will already have 

the weight vectors the only thing that I have to do multiply the weight vector with the 

feature vector find out four different values four different transitions choose the 

maximum or choose the transitions that has gives the maximum value that is the 

transition you will take. And then if you go back this is the transition you take and then 

apply this transition over this configuration to find the next configuration, and keep on 

going in this loop until your buffer is empty, and this is what your run time. Now, what is 

not clear to you right now is how do we learn these weights, everything else is clear. 
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So, let us see. So, learning weights we will have to use the labeled data that we have is 

the training data. Now, let us see what are the steps that we need to do over the training 



data. Now, training data, I will have the instances of this form f c and t is this clear 

entering data we will have configurations and transitions, yes. And configuration I know 

what is the feature representation, so I convert the feature vector. So, I can have f c and t 

f c is nothing, but the feature representation of the configuration c and t is the correct 

transition out of it starting from c. And this I can for obtain from my oracle. Remember 

in oracle I had my configuration and the optimal transition, so I know this configuration 

what is the transition it should take. So, from there, I go to next step f c and t. 

Now, this is something that we have done in the last class, but let me try to repeat that 

again that how do we sample this oracle function from the set of labeled sentences 

labeled of dependency graph. So, for each sentence x with the gold standard dependency 

graph g x, you have to construct a transition sequence right like we did in the last class 

for the example he sent her a letter, such that c 0 is something that will obtained by 

applying the initialization function on x and this is the final dependency graph. 

Now, for each intermediate configuration we will construct a training instance. So, right 

we will have c i t i c i t i and c i will go to f c i and this is the condition for how are am I 

moving in from one configuration to another configuration. So, this is the same thing that 

that I have discussed earlier in today’s lecture that what is the idea is starting from the 

gold standard sentence and dependency graph find out this sequence c i t i c i t i. Now, 

the only addition here is I covert each c i to it is feature representation, so that is why I 

what I have I have f c i t i f c i t i. 
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And how do you sample the transitions in oracle this is something again that we did in 

the last class. So, if you see that in my dependency graph the current top of the word in 

the stack is connected to the top of the word in buffer. So, you will have a relation 

depending on the direction it will be left-arc or right-arc. So, here if the top of the word 

in buffer is the head and this is the dependent you make a left-arc transition. So, this is 

what you will store.  

If top word in the in the stack is head then you will have a right-arc relation, yes. Then 

how do you choose between reduce and shift, if there is a word below that of the stack 

such that it is connect to the first word in the buffer, then you do reduce otherwise you 

shift. And remember this is rule of thumb that we discussed in the last lecture. If you are 

choose between reduce and shift this is the condition that you can use. So, I hope the idea 

is clear, you are starting with the sentence in training data, you have the gold standard 

dependency graph, you keep on going through your transitions and store it somewhere f 

c i t i f c i t i f c i t i. 
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Now, how do I use that to learn the weights? Now, and this is the idea of learning the 

weights. So, what you will do? You will start with some initial set of weights. So, here I 

have said all the weights can be initialized to 0, but probably not will 0, you can initialize 

with some other numbers say some initial random numbers or some uniform numbers, 

you initialize your weights. Now, what are you going to do? So, there are two loops here 

for i is 1 to K this is the number of iterations that you are doing; for j in 1 to N, 1 to N is 

the all the set of sentences that you have in your training data. So, you are doing multiple 

iterations over your training data. 

In each iteration, what do you do, you take the sentence, yes, you get the initial 

configuration fine. Now while buffer is not empty, so what you are doing right now, you 

are again repeating the same stuff over each sentence in the training data. You start with 

the initial configuration and now try to find the transition as per your current weights, so 

that is where the idea of learning comes in. 
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So, let me try to explain it here. So, you have a sentence S, now you can apply the c s x 

function or and you go to initial configuration C 0. Now, you take a transition to go to C. 

Now, this is your sentence in your training data that means, you know what is the 

transition you should take, yes, but I want to use this idea to learn and how do I do that. 

Now, suppose that you are actually at the run time at testing time, so then you do not 

know the transition. So, you will convert that to some feature vector f c, t. Now, at run 

time, how do you find out the optimal transition multiplied with the weights and take the 

argmax. And let us say this is t star, this you can do that even if it is in the training set 

and let us call it t naught - optimal transition. 

Now, what is the idea? You are still in the learning stage. So, your weights will not be 

optimal. So, when you do this operation, you may not get the optimal transition, you may 

get something else and that is where you will try to adopt your weights. So, you will say 

if t star not equal to t 0, then you update your weights. And how will you update your 

weights such that you go in the direction of the actual transition, and away from the 

transition of the transition that you obtain at the current point. So, simple thing is w new 

would be w old plus f c, t 0 minus f c, t star. So, going in the direction of the optimal 

transition and away from the transition that you are currently predicting, and there can be 

some learning rate and all that we are not discussing right now. So, there will be some 

learning weights by which you will do this update. So, you will have now new weights. 



Again you keep on doing it for c 1, c 1 you know what is the transition optimal 

transition, but you will find out argmax t star match with this; if they are not the same, 

you will again update your weights. So, you will keep on doing that for all the sentences 

S 1 to S N in your training set and you will do it 1, 2 some K times until the weights are 

converging. So, once the weights converged, we stop. So, this is what we have shown 

here. So, you start for each sentence you have some initial configuration, while buffer is 

not empty. So, you keep on doing the stuff. Find out what is the optimal transition as per 

your weights, find the optimal transition from the oracle; if they are not matching, update 

your weights, but you take the correct transition. So, the next time you are starting with 

correct configuration, keep on repeating it. And finally, you will end up with new set of 

weights. 
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So, now to further understand that let us take an example and that will make it clear to 

you that how the learning or how the weight updation takes place. So, this is simple 

example. So, I have a sentence John saw Mary. So, what do you need to do? First 

question is draw a dependency graph for this sentence that is very easy, yes. Now, the 

next question says that you are using the data driven dependency parsing the same 

method that we have discussed in this lecture and in the last lecture. And you already 

have the gold standard parse in your training data and you have some other information 

like John and Mary are nouns; and saw is verb, and also given you features. And you are 



told that initialize your weights to 5 except that for left-arc the weights are 5.5 define 

your feature vector, and the initial weight vector. 

So, let us try to do this. So, how many conditions are we seen, we are seeing three 

conditions over my configuration. The stack is empty, top of stack is noun and top of 

buffer is verb, top of stack is verb and top of buffer is noun, three conditions. Now, these 

three conditions I have to check for all the four different transitions. So, what is the size 

of my feature vector 3 into 4 - 12? 

(Refer Slide Time: 27:15) 

 

So, my feature vector, so it is of 12 dimension. And what are my features, so first feature 

let me write it simply condition one that is the stack is empty and same as starting with 

left-arc; transition is left-arc. Second feature can be condition 2 and left-arc; third 

condition three and left-arc, yes. This is my f c, t a condition over the configuration and 

transition. First three elements next three elements same c 1, but now transition will 

change still right-arc; c 2 right-arc, c 2 right-arc. And then the next elements c 1 reduce, 

c 2 reduce, c 3 reduce, and here c 1 shift, c 2 shift, c 3 shift. So, this is my feature vector 

twelve elements here. Now, what is my weight vector? Initial weight vector we said all 

the elements are 5 except the left arc is 5.5. So, the weights are 5.5, 5.5, 5.5 and 

everything else is 5.0, 5.0 and so on that is your initial weight vector and your task is 

now so this was the first question what is my dependency parse John saw Mary. So, saw 

is here, John and Mary this is subject and this is object. 



Now let us see what the question says further. So, the next question says use this gold 

standard parse during online learning and report the weights after completing one full 

iteration of arc eager parsing. So, it says that now you have to learn the weights using the 

arc eager parsing or the transition parsing that we have seen.  

So, now let us see how do we learn the weights. So, this is what we have defined right 

now. We have this features, we have this weights initially as per dependency graphs. So, 

how will I start learning? In learning, I will take this sentence I will put it to the initial 

configuration initial configuration is what this stack is empty, buffer contains John, saw 

and Mary; and arc is empty. So, now, at this configuration C, I have to choose what is 

the optimal transition as per my classifier. And I have to choose the optimal transition as 

per my oracle from oracle what will be t 0. Oracle I will be very easily saying that this 

would be shift I am doing a shift at this point I should shift here, but what is being 

predicted by my classifier. So, let us see what will be t star as per my classifier. 
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So, for my classifier how do I obtain t star. So, t star would be argmax w times f c, t for 

all possible transitions. So, let us do one-by-one. So, what will be f c, LA what is the 

feature vector when the transition is LA? So, for that let us look at my feature vector 

definition. So, this will be a binary value at each point c 1 and LA. What is c 1 top of the 

stack is this stack is empty, so c 1 is 1, and transition is left-arc, so this will be 1. C 2 top 

of stack is noun, and top buffer is verb. Now, top of stack is empty it cannot contain a 



noun, so c 2 is 0; so already this will be 0. C 3 again say top of stack is verb and top of 

buffer is noun again this will be 0 that is why I fill in my feature vector 

Now, let us go to this. Now, immediately as you move to some other transition RA this 

should be 0, yes because here your transitions is LA. So, everything else will be 0, 12 

elements. Now, what is your weight vector? Weight vector is here, say if you multiply 

weight vector with f c, LA, what do you get? So, w times f c, LA is equal to 1. So, only 

one element is 1. So, I will multiply with that this will give you 5.5. Now, similarly now 

you can easily figure out what are the other features f c, RA. For RA, similarly only this 

element will be 1, everything else will be 0. So, what is w times f c, RA that will be 5. 

And similarly, if you keep on doing for all shift and reduce you will find this for shift is 

5 and this for reduce is 5, yes. 

So, now what is your t star argmax t w times f c, t that is will be left-arc. And what is 

your t 0 optimal is shift as per your oracle. And how do you learn your weights, if t star 

is not the same as t 0, you will update your weights. And what is the (Refer Time: 33:45) 

update w plus f c, t 0 minus f c, t star. So, what is f c, t 0? That is f c SH. So, what will be 

this function? So, suppose SH was at the end. So, it was 1 0 0 and everything else is 0 

and this is my LA. So, what will be the new weight vector? So, I have the original weight 

vector that is this 1 plus this minus this. So, what will be the new weight vector? t will be 

I am subtracting one here, so 4.5, 5.5, 5.5, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0. And now I come to 

shift in shift I am adding that1, so it will be 6.0, 5.0, 5.0, and that is your new weight 

vector. 

And now you will work with this weight vector for the next set of configuration. So, 

what will be the next configuration from here you will apply shift and next configuration 

will be John saw Mary, and phi. Again you will convert it to the feature vector see what 

is t star that you are getting what is t 0 if they are not matching update your weights and 

that you will continue until you arrive at the terminal configuration. And then you will 

have the final weight vectors. So, I will encourage all of you that you should try it this 

full example on your own, and see what is the final weight vector that you are getting. 

And even if you are trying to see that by using this weight vector, does that help in that 

now with the new weight vector if you try it on the old configuration you will be closer 

to the optimal configuration as per the oracle and not what your (Refer Time: 36:10) 

early updating. 



So, this is the idea of how you can use the machine learning methods for this dependency 

parsing by taking this example of arc eager of transition based parsing. Now, in the next 

lecture, we will start discussion on a new method of dependency parsing, and we will see 

that again how we can use the label data for doing this. 

Thank you. 


