

Natural Language Processing

Prof. Pawan Goyal

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture-23

Syntax – CKY, PCFGS

So, welcome back for the third lecture of this week. In the last lecture, we had discussed

top-down and bottom-up parsing approach and then finally, we came up with the

dynamic programming approach of using CKY algorithm; and we converted a grammar

to Chomsky normal form. Now, once my grammar is converted to Chomsky normal

form how does CKY algorithm work, so this is the idea.

(Refer Slide Time: 00:44)

So, I will take a sentence; I have n words in my sentence. So, you will think about n plus

one line that are separating them, is starting from 0 to 1. And so once you have done that

any x i j you will denote words between line i and j. So, you will build up a table such

that any x ij will contains all the possible non-terminal that can derive words between the

lines i and j. And you do that bottom-up.

(Refer Slide Time: 01:23)

So, what I am saying, you have word 1, word 2 up to word n in your input stream. So,

you assume some lines like 0, 1, 2, n minus 1, n. So, for example, x 0 2 is words w 1, w 2

and so on. So, now what will you do? You build up a table and table will be some sort of

triangular table. So, this can be 0, 1, 2; so this element will denote x 0 1, what are all the

non-terminals that derive this word between 0 and 1. Similarly, here you will write x 1 2

and so on. Suppose, they want a three words, this is x 2 3. So, we will write down all the

non-terminals that derive this. You first fill this, then you will go next step, x 0 2, x 1 3.

And once you fill this, you will use x 0 3 – the final one.

Now, what is the, where have we using the fact that this grammar is in CNF - Chomsky

normal form, I will make sure the fact that at any point, this can come from only two

non-terminals or a single terminal. So, at this point, when I am seeing as an individual

word, so 0 1 will always be a individual word, similarly for 1 and 2. So, this will come

from a rule capital A goes to small a, a rule of this kind. So, I will find out all the non-

terminals that derives this terminal that is how I will fill the diagonal elements, the first

diagonal elements.

Next time, this cannot come from a single terminal, because they are two words. So, this

has to come from two non-terminals. So, I will find out if there is a rule that gives me

these two non-terminals and that is why I am using Chomsky normal form. So, finally,

when I am here, I will see if the sentences generate the whole sentence. So, I am catching

all the possible intermediate steps here, so that is I have to do certain again and again.

So, this is the simple home exercise, so in the in the last lecture, we had given you a

grammar in Chomsky normal form. Now, take the sentence, “Book the flight through

Houston” and use the CKY algorithm to find the parse tree for that. So, but what I will

do? I will do an example in today’s class also so that it becomes more much more

comfortable with using CKY algorithm.

(Refer Slide Time: 04:32)

So, let us take this example, a pilot likes flying planes and the grammar is given to you.

(Refer Slide Time: 04:46)

So, let do that in the way I had explained, so 0, 1, 2, 3, 4, 5, there are five words. And

this is the line. And now you should understand how do we denote these elements. So,

this is x 0 1, this is denote on we the first word, this is x 1 2, x 2 3, x 3 4, x 4 5. This will

be x 0 2 – words between 0 to 2. X 0 3, x 0 4, x 0 5, x 1 3, x 1 4, x 1 5, x 2 4, x 2 5 and x

3 5. Now, I have to fill here, what are different non-terminals that filled each of the

individual elements, x 0 1.

What is x 0 1? My word is a, so a pilot likes flying planes. So, is there a non-terminal

that derives the word a. And if you see the grammar, DT derives a; so you can fill in DT

here; DT derives a. Pilot, NN derives pilot. Likes, VBZ derives likes. Flying, so you

there are two non-terminals VBG JJ they derive this; ‘and’ planes – NNS. So, filling the

diagonal element is very easy, the first diagonal elements. Then you go the next step, x 0

2. Now, x 0 2 can come from x 0 1 and x 1 2, as a break up of these two points. So, is

there an non-terminal where or is there a rule in my grammar when the right hand side, I

have DT followed by NN. And if you see your grammar, yes, NP gives me DT followed

by NN, so I can fill in NP here. X 1 3 comes from x 1 2 and x 2 3, yes x 1 3 pilot likes,

so it comes from pilot and likes, so any non-terminal that gives me NN followed by

VBZ. And if you see, there is no non-terminal. So, I will fill in empty here.

Similarly, and if VBZ followed by VBG, no; and if anything from VBZ followed by JJ,

X 3 5, VBG followed by NNS, yes, VP, and JJ followed by NNS – NP. So, there are two

possibilities. So, fine this row is done, this diagonal is done. Now, we go to next step.

Now, how do I derive x 0 3 - a pilot likes. Now, that is why I am using the Chomsky

normal form. I cannot derive it at a sequence of three non-terminals, because each

individual non-terminal can give me at most, not at most exactly two non-terminals.

So, what are the two places, from which it can come? So, one possibilities I can break x

0 3 as x 0 1 and x 1 3; one word into two words or x 0 2, x 2 3, there are two

possibilities. So, I have to check individually each of these possibilities, x 0 1 x 1 3; x 0 1

is DT followed by null. So, this is already gone; this is no non-terminal. X 0 2 is NP

followed by, 2 3 is VBZ, so NP followed by VBZ. Is there a non-terminal, when the right

hand side I have NP followed by VBZ. And if you see your grammar, there is nothing.

So, this is also null. So, here it is null, there is no non-terminal let me derive, a pilot

likes.

Now, pilot likes flying, 1 to 4. So, again 1 to 4 will be 1 to 2, 2 4, or 1 3, 3 4. So, 1 2, 2 4,

1 2 is NN, 2 4 is null – so this part is null. 1 3, 3 4, 1 3 is null, so this is becomes 1 also. 2

5 will be 2 3, 3 5, and 2 4, 4 5. So, 2 3 here is VBZ, and 3 5 is VP. Is there something

that VBZ and VP, yes, VP this means VBZ and VP. 2 4, 4 5; 2 4 is null; so this is my

VP. Similarly, now you will go to x 0 4. Now, what are difference which you can break x

0 4. Now, 0 4, again you to break in a sequence of two non-terminals, so it can be 0 1

followed by 1 4 or 0 2 followed by 2 4 or 0 3 followed by 3 4, there are three ways.

So, let us see one-by-one. 0 1 is DT, 1 4 is null, so this part is gone. 0 2 is empty and 2 4

is null, this part is also gone, 0 3 is null already, so this is null. 1 5, 1 5 can be 12 25, 13

35, 14 45. 12 and 25, yes, NN followed by a VP, so is this something in my grammar,

NN followed by VP, no, so this is gone. Similarly, 13 followed by 35; 13 is null, and 13

is null, so this is gone. 14 followed by 45; 14 is null, so this is also gone, so this is also

null. Now, the only thing remain is x 0 5.

Now, how can I fill x 0 5, what are different ways. So, that let me write down here. 05

can be 01 followed by 15; 02 followed by 25; 03 followed by 35; 04 followed by 45. 01

followed by 15; 01 is there, 15 is null, this is gone. 02 followed by 25; 02 is there and 25

is also there; this is NP followed by VP. And this is a sentence in my grammar. So, S

gives me NP VP, so this is one possibility already, so; that means, this sentence is

grammatical at least. There is one S that derives this, but are there any further S.

So, for that we have to look at other possibilities 03 35, this is null; and 04 45 is null, so

fine. So, if you see there, I think we made one mistake here; there should have been

another VP in this case. So, there is VP 1, VP 2. And then there will be S NP VP 1 and N

P VP 2. So, I will search that look back into this calculation we did and see where we

made a mistake. But everything else is the same that we did here. So, there are two

different S in which this sentence can be parse tree, two different ways. So, now once

you know this, I will say that use the previous example so that is Book the flight through

Houston from the other grammar and try to get its parse tree.

(Refer Slide Time: 14:09)

So, now in this example, what we saw, there are two possibilities. So, can you think of

the possibilities, why there are two possibilities in this case, a pilot likes flying planes.

So, whether he likes to fly the plane or whether he likes to see flying planes something

like that, so there are interpretation, that is why there are two different parse edge of this

sentence. So, each individual parse will denote one particular interpretation. Now, by

using this context by this CKY algorithm, we denote all the possible parse trees using my

grammar. But I have no way of saying which parse is more probable than the other parse.

I cannot assign some probabilities to them. So, something if I have so this is the

sentence, the man saw the dog with the telescope, it has two different interpretation in

terms of two different parse edges. Whatever I have covered till now, it cannot tell me

which parse is more probable than other.

(Refer Slide Time: 15:15)

So, now we would like to have a way in which we can assign them the probabilities that

this parse edge is more probable than the other. And for that what we use is called

probabilistic context free grammars. So, this is simple extension of context free

grammar, where in addition to whatever we have seen in context free grammar, each rule

is also signed some probability. So, as you see in the formulation, it is T, N, S and R.

They are exactly same as what we had seen in the context free grammar plus there is

something called P.

So, I am assigning a probability distribution over the rules, and only the constraint here is

that from a given non-terminal the lateral side the probability generating anything should

add up to 1. So, if there are 5 possibilities, if I add all the 5 possibilities, the rule for all

the 5 possibilities, they should add up to 1. So, this is the constraint. So, probability in

the rule gives the gives the probability of each rule P R, so the constraint is for all X in

non-terminals, probability of X to gamma for all the possible gammas should add up to

1.

(Refer Slide Time: 16:31)

So, let me give you an example. So, this is one simple CNF, sorry simple PCFG in

Chomsky normal form. So, what do you see here? From S, there is only one rule, S goes

to NP VP. So, because there is only one rule, it has a possibility of 1. From VP, there are

two rules; VP can give, V followed by NP or VP followed by PP. So, the constraint is

that for the possibilities of these two rules should add up to 1, so that is what is

happening here. The first rule has a possibility of 0.7; second rule has a possibility of 0.3,

these two add up to 1. Now, PP gives me P NP, only one rule with PP on left hand side,

so this is the possibility of 1. P gives me only with again possibility 1; V gives me saw,

this is the possibility 1.

Now, all these rules in the right hand sides are starting from the NP. NP giving to me NP

PP, all the words let us call as like astronomers, ears and so on. So, all these should add

up to 1. And you can see that this actually happen 0.4 plus 0.1 – 0.5, 0.68, 0.72, 0.9 and

1. So, all these possibilities are adding up to 1. So, this is the constraint that is being

followed. The rules have the same format as in context free grammar, but you shall have

possibilities. Now, how does it help? It helps in that I can now assign possibilities to

each individual parse tree.

(Refer Slide Time: 18:03)

So, suppose this is one parse tree. Astronomers for the sentence astronomers saw starts

with ears. How do I find the probability of this parse tree? This is the parse. So, I know S

gives me NP and VP, yes this is the first rule that I am applying. Now, as my PCFG, the

probability of this rule is one. S giving NP, VP is 1, so I have this one here. NP giving

astronomers, deriving astronomers is probability 0.1. VP deriving V and P is probability

0.7; V giving saw is 1. NP giving NP, V P is 0.4; NP giving stars is 0.18 and so on.

These are the rule probability as per my grammar as my PCFG. So, what I will do? I will

just multiply all these probabilities 1 times 0.1 times 0.7 times 0.1 times 0.4 times 0.18

times 0.18, this is my probabilities of this parse trees.

(Refer Slide Time: 19:03)

And if I get a second parse tree, where instead of VP giving me V and NP, VP giving VP

followed by PP, I can again compute its probability by multiplying its corresponding rule

probabilities. And I can find the probabilities of both the parse trees individually.

(Refer Slide Time: 19:21)

So, now how do I use that to compute the probability of the tree that is simply the

product of the probabilities of all the rules that I used to generate this? And probability of

assignments and the probability of sentences is nothing, but find out all the parse trees

and the probabilities of the individual parse trees and just sum them up. So, probability

of this sentence is the sum of the probabilities of the trees that have this as their yield that

is another way of saying that those parse trees are used to generate this particular strings.

(Refer Slide Time: 20:05)

So, in the first case, I had this sentence, and they were to parse trees, I can compute the

probabilities of individual one. So, P t 1 and P t 2, I can find out and to find the

probability of the whole sentence, I just add up these two probabilities P t 1 plus P t 2

and that gives me the probability of this whole sequence.

(Refer Slide Time: 20:27)

Similarly, if I have another sentence like book the dinner flight and as per the different

grammar, I can compute the parse trees - the two parse trees. Compute the probabilities

for the individual one. So, parse tree 1 here, book the dinner flight is 1.62 into 10 to the

power minus 6. And book the dinner flight will have a probability of 2.28 into 10 to the

power minus 7. So, one thing I can immediately see is that the first one parse is more

likely interpretation than the second one.

(Refer Slide Time: 20:59)

Let us look at the some of the features of probabilistic context free grammars. So, why

we started with this formulation? So we said that using the context free grammar, given a

sentence we can find out all the possible parse trees, but you are not able to assign any

probabilities to that. So, by using PCFG, if for a given string, the number of parse trees

are increasing, I can also assign the probabilities for each individual parse trees, so that

gives me some plausibility, which parse tree is more probable than the other one for the

given string. So, this is important, but at the same time we should understand that

although by using PCFG, I can compute what is the probability of the sentence by taking

all the parse trees, taking the individual probabilities and adding them up, this is this just

not giving a very good plausibility of the sentence. This is only looking at the structural

factors not some lexical co-occurrence.

So, in general, to find the probability of the sentence, you would prefer to use language

model than a PCFG. PCFG is good only for find the probability of a parse tree, which

parse is more probable than another one. Yes, if it helps in some cases like in real text

you might find some grammatical mistakes, so PCFG will allow that, but will give you

very, very low probability. So, in one case, you can also probably find out which

sentence has some grammatical mistake. If the PCFG is giving it low probability. And

yeah, this is something that I said earlier; so in practice, this is not good for modeling the

probability of the sentence, language model is much better than PCFG.

So, why is that the case, so a simple example is if we have the same sentence, I have two

different trees, one is smaller than the other, the smaller tree will always have a higher

probability than the larger one, because all the probabilities are less than one. And for a

larger tree, you are multiplying the probabilities. So, to take away here is that, you would

use PCFG to find out what are all the probabilities for different parse trees for a sentence

and try to choose the best one.

(Refer Slide Time: 23:24)

So, now once we have this formulation of PCFG, there are some interesting questions

that we would like to explore using that. So, suppose I am given a sentence W 1 m, I am

given a grammar G, and there are various parse trees t is one of those. So, what is the

most likely parse for this sentence given the grammar? So, which parse is tree t gives me

maximum probabilities argmax of probability given the sentence and the grammar. Then

what is the probability of the sentence? Probability of the sentence given by grammar,

and then finally, how do we learn the rule probabilities of my grammar G, which these

are the three interesting questions that we would like to answer in the next lectures.

So, for example, how do I find the most likely parse of a sentence? So, one simple

solution is find out all the possible trees and take the one with the highest probability, but

is there any efficient method for doing that. What is the probability of a sentence? Again

I can find out probabilities of the individual parse trees add them up, this gives me the

probability of the sentence, but can I do a t extortion numerating all that and adding it or

is there any some other methods. And finally, there is some interesting question that how

do I learn the rule probabilities in the grammar G. And the answer to this will be similar

to what we saw in the case of Head and Markov models.

So, there are they will be again two ways of running the parameter; one will be when the

I am given the corpus and some labeled parse trees, I can use them to find the

probabilities. Under the scenario, where I am given the corpus, but not the parse trees, I

am only given the grammar, grammar in the sense CFG, not the rule probabilities, then

how do I learn the parameter. So, this will be again very, very interesting topic and there

you can use some ideas where that I had shown earlier for the (Refer Time: 25:33)

algorithm. So, in the next lecture, we will start trying to answer some of these questions.

Thank you.

