
 

 

Natural Language Processing 

Prof. Pawan Goyal 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture – 19 

Maximum Entropy Models – II 

 

So, welcome back for the fourth module of this week. So, in the last module, we had 

started talking about the maximum entropy classifiers what is the basic principles for 

using this maximum entropy classifiers. And we saw that we can use any hidden new set 

of features that were not allowed in the earlier model like HMM. So, today I will start by 

taking a simple example that will give you some idea on how maximum entropy 

classifier actually works for a simple classification problem. And then we will see how it 

can be used for a sequence tagging problem that is I am given a sentence. So, this is my 

problem for part of speech tagging and given the sentence for each of the words, I have 

to find out what is the actual part of speech tag for that. 

So, right now what we had seen in maximum entropy classifier, it gives me a probability 

on the class y given a context. So, for each individual word for the context around that 

word, I can predict what is the appropriate part of speech category, but once I am given 

the sequence how this model will be actually utilized. So, there it has a special name 

called MEMM - maximum entropy Markov model and we will see what is the algorithm 

for using the classifier that we have discussed for a sequence tagging problem. 



 

 

(Refer Slide Time: 01:40) 

 

So, now starting with a simple problem on how to use maximum entropy classifier, the 

practice problem, so you can try it on your own but I will try to give you certain hints. So, 

problem says, so you want to use maximum entropy model for part of speech tagging, 

and you are trying to estimate probability tag given word. And in this hypothetical 

setting, you can assume that there are only three possible tags determiner, noun and verb. 

And the word can belong to any member of a set V that is your vocabulary; and 

vocabulary contains the words a, man, sleeps and some additional words. So, in this 

problem it does not matter how many words are there in your vocabulary. 

Now, the constraint given is as follows. So, the distribution that you will find probability 

tag on word should give the following probabilities. Probability of determiner given the 

word a is 0.9, probability of noun given the word man is 0.9, tag V given sleeps is 0.9, D 

given any word other than a, man or sleeps in the vocabulary is 0.6 and same for that two 

constraints that are given here. So, remember that is what we did in the case of maximum 

entropy classifier. You are given the data; and from the empirical distribution, you 

extract certain facts and now you want to find out a distribution that resembles that 

empirical distribution. 

So, now I want to find out probability I given word such that these constraints are 

followed. So, now how do I go about building my maximum entropy classifier this is the 

problem. So, now it is said that all other probability that are not given suppose that take 



 

 

some values such that probability I given word is one for all possible tags, this is the 

normalization constraint, the probability for all the possible tags for a given words 

should add up to 1. 

Now, there are certain questions here. So, the first question says is that so you are given 

this problem settings. Now, try to define what will be the features option maximum 

entropy model given these constraints. And the problem says that Markov features as 

some f 1 and f 2. And each feature should have the same format as we explained in the 

last class, so that is each feature your function of x and y x is the context around the 

word and why is the particular class or tag. 

Then the next question is for each feature f i assume a weight of lambda I now write 

down the expression of the following probabilities. So, what is the probability of D given 

cat in terms of your model parameters? So, the parameters are mainly lambda 1 to 

lambda 6. Similarly, find out probability of N given laughs probability of D given man. 

Finally, the problem is what should be the values of the parameters in your model 

lambda 1 to lambda 6 such that you have to the distribution as shown in the question. So, 

this is by problem. So, let me try to solve it n-steps. So, this is the first problem what 

should be the features of my model, such that they resemble this distribution. So, these 

are the actually certain facts from the data. 

(Refer Slide Time: 05:01) 

 



 

 

So, let me write down the first fact probability D given a is 0.9. So, now I want to find 

out some features f x, y such that it can try to match this particular constraint. So, x is on 

my data. So, this was my word and the context and y is the tag. So, now what am I 

observing in this particular example I am observing that when the word is a, then the tag 

that I gives is D with the probability of 0.9. So, what kind of feature will try to model 

this? So, my feature should be affects y. So, I can use a feature word that is my x is equal 

to a, and tag that is my y is equal to D that encodes both a and D that are that I am 

observing in this empirical data. In this, we can call as your f 1 what is a and tag is D. So, 

this is a binary feature. So, whenever you will see word as a and tagged D, you will put it 

as 1. So, to express it you can say f 1 is equal to 1; if this happens is equal to 0; if this 

does not happen I am not writing it in this paper. 

So, now I have to define some other features right and the hint is that six feature will 

make my task easy, so that is like sufficient hint you have six possible constraints and 

you have to define six feature one for each for each constraint. So, let us take the second 

constraint. Second constraint is probability N given man is 0.9. So, for this constraint, 

what will my feature, again so f 2 would be word is equal to man and tag is equal to N – 

noun. Same way you can do for your third case. So, f 3 will come out to be word is equal 

to sleeps and tag is equal to V. 

Now, what would you do for your fourth observation? What is that probability D given 

word is equal to 0.6, for word in vocabulary minus a, man and sleeps, for any word other 

than a minus sleeps. So, what would your feature, again you will have a similar feature f 

4 word is in, so let me call this as V prime V minus a man sleep, let me call it as V prime 

this is my V prime. So, word is in V prime and tag is equal to D. Similarly, my f 5 will 

become word in V prime and tag is N. F 6word in V prime and tag is V, and these 

become my six features that will try to model the distribution. So, this is how you will 

select the features given certain facts about the data. 

So, see here I am not doing anything from matching this, these numbers right now, so 

that I will try to do using my lambdas that the feature weights set that I have to choose. 

So, the next part of the question says is that now give weights. So, suppose this is lambda 

1, it has a weight of lambda 1, lambda 2, lambda 3, and so on. So, each feature f i has a 

weight of lambda i. Now, try to find out some probabilities in terms of the model 



 

 

parameters. So, let me take out the first question itself that is probability of D given cat, I 

want to write that in terms of model parameters. 

(Refer Slide Time: 10:04) 

 

So, what will be this probability D given cat? So, now in terms of my maximum entropy 

model, how do I write this particular probability, it should be e to the power sigma 

lambda i f i divide by a normalization constant; and Z should be such that this will add 

up to one for all the three tags. So, probability D given cat plus probability N given cat 

plus probability V given cat should be 1. So, let me take this particular y, let me focus 

only on this and I will talk about Z later. So, now so this is sigma lambda i f i x y, x here 

is cat and y is D. So, now f x, y, so each of the six features are binary features, so they 

will take either 1 or 0; and lambda ones are just given to me and then the values are not 

given. So, I can just take lambda 1, lambda 2 and so on. 

So, now, what will be this value? So, let me take the first feature. So, first feature is here 

word is a, and tag is D. In this case, my word is cat, so clearly this feature is not one. So, 

for f 1, x 5 it will be 0. So, lambda 1 times 0 plus lambda 2 times; what is my second 

feature second feature says that word is man and tag is n again this is 0; f 3 word is 

sleeps tag is V again 0. F 4 so my feature f 4 is word is in v prime, is this word in v 

prime cat is not either a man and sleep so it is in v prime, and tag is d. So, this is actually 

one. So, word is in v prime and tag is d, so lambda both 4 times 1 is I will not write f 4, f 

4 is 1 in this case plus lambda 5. Now, you will see in feature 5 and feature 6, the tags 



 

 

are different they are N and V. So, they will again be 0 plus lambda 6 0, this comes out 

to be lambda 4. So, now what is my probability? It will be e to the power lambda 4 

divided by Z. 

Now how do you find out Z? Now have to find out Z, you have to actually compute the 

other two probabilities also. So, you have to compute probability N given cat, probability 

V given cat and then you can make this plus this plus this is equal to 1, so let me quickly 

do that. So, what will happen for when you compute probability N given cat? The first 

three features again use a word a, man and sleeps that is not here. From fourth features, 

they are using the words in V prime, so the word cat is in V prime. So, the features can 

be 1 from f 4, f 5, f 6, but now I have to see the tag. For f 4, the tag was D; for f 5, the tag 

was N; and for f 6, the tag was V; this was N and this was V. So, for N given cat f 5 will 

be 1; and V given get f 6 will be 1. So, can I write probability and given cat, this will be 

e to the power lambda 5 given Z, and this will be e to the power lambda 6 divided by Z. 

Now, you can compute what is P D given cat because this c will add up to 1. So, put in 

the constraint e to the power lambda 4 plus e to the power lambda 5 plus e to the power 

lambda 6 divided by Z is equal to 1, so that gives you Z is equal to e to the power lambda 

4 plus e to the power lambda 5 plus e to the power lambda 6. So, this we can write as e to 

the power lambda 4 divided by lambda 4 plus e to the lambda 5 plus e to the power 

lambda 6 that is your probability of D given cat in terms of your model parameters. 

Now, in a very similar manner, I will suggest that you try out the other two cases, what is 

the probability of N given laughs, and what is the probability of D given laugh. So, again 

we have not use of the probabilities 0.9 and etcetera that were given in the constraint of 

discussion, so that I have to use in the last point. So, what values with the parameters in 

your model take to give the distribution as described above, so that is what values they 

should takes us that probability D given a is 0.9. So, need to you may leave your final 

answer in terms of equations. So, let me try to take only the first try to satisfy only the 

first constraint what should be the constraint on my lambda such that the first constraint 

of probability D given a is 0.9 satisfied and the idea is very, very easy. 



 

 

(Refer Slide Time: 15:53) 

 

You will just that like we found out probability D given cat, you will now try to find out 

probability D given a, and that will be e to the power lambda 1, yes because first feature 

is 1 for this case divided by Z. Now, what is Z? So, for finding out Z, I have to find out 

probability V given a, and probability N given a, now brought this probability V given a. 

So, again I will write 1 divide by Z into something e to the power lambda 1 times f 1 and 

so on. Now the word a is given only in the first feature, yes, first feature says the word is 

a and tag is D. So, the word is a is given; it is not given in feature 2, feature 3. 

Now, what about the other features f 4, f 5, f 6, they all talk about words in V prime 

where word is not there. So, any of the feature cannot be one for this case, so all of them 

will be 0. So, it will be simply e to power 0, all the features are 0. Same happens with N 

given a, so they are 1 by Z, 1 by Z, and this tells me that probability D given a should be 

e to the power lambda 1 divided by e to the power lambda 1 plus 2, and there should be 

0.9 to satisfy the constraint. And that will give me the value of lambda 1. Similarly, you 

will do for all the six cases and write down the questions. So, hope that gives you a good 

idea on how do we actually start building a maximum entropy classifier from (Refer 

Time: 17:50) in the data and how do we compute the probabilities. 



 

 

(Refer Slide Time: 17:54) 

 

Now, I will take a very specific case. So, that is by the paper written in 1996 by 

Ratnaparakhi on using maximum entropy model for part of speech tagging. So, what I 

will show is that what kind of features they are used for part of speech tagging. So, now, 

this model is there now what is important to understand is that given a problem, what 

sort of features I should use to get a good performance, model will work well if the 

features that you have chosen you have chosen make sense for this particular problem. 

So, for part of speech tagging problem, what are the kind of features that he had used. 

Now, given a new problem again you have to go back and find out what should be the 

interesting features you know now the format of features how you should define your 

features, but what are important features we will always depend on the particular 

problem that you are solving. So, as we had said in the maximum entropy model you 

choose a context around the word from where you can choose your features. So, in this 

case, what is the context they have chosen? They have chosen the current word, the next 

two words, the previous two words, and the tags given to the previous two words. And 

that is interesting how do you use this kind of features at the time of decoding when 

given a sequence you are trying to find out the tags. Because you do not know what is 

the best tag for the previous word. So, we will look at this problem, when we talk about 

the search algorithm the beam search algorithm that how do we make use of previous tag 

and previous tag here are to be assigned that are not yet assigned fully, but here use 

always features in all this context for defining this features. 



 

 

Now, what are the form of features? So, yes just to give you another example, features 

will depend on the history or the context and the current tag. So, it is one if the current 

word has a suffix of ing and the tag is VBG that is one kind of feature; the suffix of the 

current word and the tag. So, what are the other features? 

(Refer Slide Time: 20:02) 

 

So, what is one interesting thing here? We divided it features into three parts; some 

features are only for those words that are not rare that a very, very common. Second sort 

of features are those words that are rare. Why does it define separate features for the 

words that are rare? Because these words may not be seen again in my training data, but 

I might see some other real words, so can I use some of the properties of these words 

instead of using the word directly? So, further words that are not rare, they occur many 

times uses a word directly w i is equal to x, and its current tag this is the form of feature. 

But if the word is rare, he does not use the word directly, he says x is a prefix of w i 

length of x is less than equal to 4. So, he uses all the prefixes of the word is starting from 

1, 2, 3 and 4, same for suffix. 

Now, how will that be helpful using the suffix? So, for example, I have words that ends 

in ed, but overall the word is rare. So, can I use the fact that the word ends in ed ok that 

is why we are using the suffix here similarly for prefix, I can have something like in for 

making the opposites for an adjectives and so on. So, this can be captured by using this 

kind of features. Whether the word contains a number or in uppercase character or in 



 

 

hyphen, this is for rare words. Now, he just some other features for all the words. So, 

what are the features? The previous tag is x and the current tag is t, this is very, very 

generic feature. The previous two tags are x and y, current tag is t; previous word is x 

and current tag is t; previous-to-previous word is x, current tag is t then similarly for the 

next for the next, next words. 

(Refer Slide Time: 22:19) 

 

So, now let us see what will be the form these features will take. So, this is the generic 

form of the features. Now, let us take a simple context and see what are the forms these 

features are going to take. So, this is one context, I have a sentence the stories about well 

heeled communities and developers, and the tags are DT, NNS all the part of speech tags 

are given to me. So, this is for my label data. 

Now, what are the values these features will take? So, firstly, I will differentiate between 

the rare words and not so rare words. So, what can be the rare words here? For example, 

the word well-heeled here is a rare word; and other words like stories, communities, 

developers are not rare. So, for the words that are not rare what feature am I using the 

current word and the tag? So, my feature could be the word is a stories, and tag is NNS 

and so on. So, for the word well heeled I will use the suffix and prefix. So, W is a prefix 

of the word and tag is J J; W is a prefix and tag is J J; similarly ed is a suffix and tag is J 

J and so on. And then there will be some features for all the words like for about and 

well-heeled, what would be the feature the previous tag is IN and the current tag is JJ. 



 

 

The previous two tags are NNS and IN, and the current is JJ. The previous words or the 

word stories and well-heeled about and well-heeled and so on, so you can use all these 

features. So, here are all these features. So, this is prefix and suffix for the rare word 

well-heeled. 

And there are other things like w i contains hyphen that is in the case of well heeled and 

tag is JJ. So, now that is how you will write down all your features from your data. And 

you will learn your parameters lambdas and all; and at run time you will use again these 

features in the parameter to finding the probability of the tags. So, hope this gives you 

some idea, and how can you choose your features for a given task. 

(Refer Slide Time: 24:37) 

 

Now, let me go to the search algorithm for this maximum model. So, this we had 

discussed earlier also, but we did not discuss in full details. Some given a sentence w 1 to 

w n these are the words, and I want to find out the probability of tag sequence t 1 to t n. 

And we said that we can write it in this form multiplication of probability t i given x i, x i 

is the context for each individual word. Now, the problem here is and you can use some 

tag dictionary that says for each individual word what are the possible tags similar to 

what we did in the case of Viterbi decoding for HMM. Now, what is one particular 

problem in this case? So, as such it looks as if you can do it independently for each word 

right; for the first word I can find out what is the best tag multiplied with best tag for the 



 

 

second word and so on. Now, what is one problem with this approach let me just give 

you one simple example. 

(Refer Slide Time: 25:36) 

 

So, this is a hypothetical example. So, let us say that we have word 1, word 2, word 3. 

And word 2 can take two tags IN and JJ; and word 3 can take lets to keep it simple that it 

can take like VBZ and maybe something else like VBG maybe they may not be possible, 

but just a hypothetical case. Now, suppose by using this algorithm or doing it 

independently, we found out that for w 2, IN give some probability and JJ gives some 

probability. Now, in w 3 what might what could happen some of the features might 

depend on the previous assigned tag. So, for VBZ you might want to use what is the tag 

assigned in the previous word so that means, choosing the probabilities the best 

probability at this point may not be the best. 

So, choosing the tag at this point may not be the best because at the next step you are 

using the tags and the probabilities can change this can happen that IN is giving the 

better probability at this point, but when combined with VBZ, JJ gets a better probability 

this can happen. So that means, I can find out the probabilities, but I have to use the 

probabilities and the tags in the next step also. So, this is not fully independent. I cannot 

just choose IN and forget about it I have to remember what is the probability next time I 

will choose IN, VBZ, JJ VBZ and try to compute the probability for VBZ multiplied by 



 

 

the previous probabilities and that is how exactly we do that I will show you in the beam 

search algorithm. 

(Refer Slide Time: 27:34) 

 

So, what is the beam search algorithm? So, your test sentences containing words like w 1 

to w n and let say that for the ith word as s i j denotes the jth highest probability tag. This 

is probability tag sequence up to the word w i. Now, how does the algorithm work? So, 

you have the words w 1 to w n. For word w 1, you have s 1 1, s 1 2 up to s 1 N top and 

highest probability tags. So, we will come to the probabilities and this is easy again you 

will use the features here which feature is 1, which feature is 0 then you will do the 

normalization you will compute all these probabilities for the each of these tags. 

Now, the important thing is how do you go to w 2. So, one thing to understand is that 

you can probably not keep all the possible tag sequences, because assume that each word 

can take on an average k tags. So, if you have N-words, the tag would be of the order of 

k to the power n, yes k to the power. So, this will be exponential in the length of the 

sentence. So, you cannot keep all the tag sequence. So, you might have to make the 

choice of the best sequence is available at this point that is what we do in bean search. So, 

at each point, I will select what is the top set up capital N sequences at this point and 

how do we how do we select that, so that is the next part of the algorithm. 

So, initialize i is equal to 2. So, now you have to second word, generate tags for w i 

given s i minus 1 j as previous tag context and append each tag to s i minus j to make a 



 

 

new sequence and then continue for all the tags. Now, what does that mean? Initialize i is 

equal to 2 that is your second word. Now, generic tags for w i s given s i minus j as the 

previous tag context what is i minus j, i minus 1 is s 1 and j. So, let me take this as the 

previous context. And suppose this has again some tags like I will just write some tags t 

1, t 2, t 3. So, s 1 1 and t 1 becomes the first sequence; s 1 1 and t 2 becomes the second 

sequence; and s 1 1 t 3 becomes the third sequence. Similarly, s 1 2 t 1 becomes forth 

sequence and so on. So, in this case, there will be three times n sequences. So, this you 

can take in general case this may not be one tag this will be a sequence up to this point. 

So, we have all the first sequence at this point. 

Now, for each of the sequence, you know what are the previous tags that have been 

assigned? Yes, so I know what are tags assigned at this point. So, I can use all the 

features. So, if a feature says t i is equal to something and t i minus 1 is equal to 

something else. So, I can check if t i matches this, and the previous tag matches this then 

only it will do 1, other wise 0, because I am choosing the context, I can compute all these 

feature. I can compute these features; I can compute the probability for all the sequences. 

And now what I will do I will select at this point what are the s i 1 to s i N, what are top 

end sequences at this point. And again I will go to the third word, again its tags combine 

with all the sequences and choose top end from here. So, what will happen use your 

space will not do exponentially, you will always have top end sequence is at any given 

point. 

So, finally, when you go to the final word, you will get the top end probabilities or all the 

probabilities, and you will select the best sequence. And now because the sixth is 

sequence contains the tag from by starting, you will find out the part of speech tag just 

from the choosing the best sequence at the last word and that is your algorithm. So, find 

N highest probability sequences by above loop set this accordingly and repeat if i less 

than equal to n. And return to highest probability sequences x n 1 for the last word, and 

this is your maximum entropy this you can call as maximum entropy Markov model. 

Instead of maximum entropy model is generate classifier that can do for each word 

individually, but when you are trying to applied for a sequence labeling problem for a 

sequel, you use this maximum entropy Markov model. So this was maximum entropy 

Markov model for you. 



 

 

Now, in the next lecture, I will take one simple example of this search, and I will quickly 

cover the model of conditional in the fields that is one of the state of the arts in sequence 

labeling task. And what we will show, there is some problem with the maximum entropy 

model that condition of fields try to handle. 

Thank you, I will see you in the next class. 


