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Baum Welch Algorithm 

 

So, welcome back for the second lecture of this week. So, in the last lecture, we were 

discussing Viterbi decoding for HMMs. And in the end, we discussed the problem of 

learning the parameters of HMMs. And we say that when the label data set available, we 

can simply estimate using maximum likelihood estimate by the label data set. But if the 

label data set is not available then how do we actually learn the parameters of the system 

and we said we will be using some sort of expectation algorithm and in this particular 

case this is called Baum Welch algorithm. 
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So, Baum Welch algorithm as I was saying this is a well known EM algorithm to 

estimate the maximum likelihood for the parameters of the HMM. So, what are the 

parameters of HMM that you want to estimate let we just formally define them and then 

we will see how do we estimate them using Baum Welch. So, in the HMM model, so we 

have a hidden state at every time point and an observation variable. So, here I am using 

capital X t to denote the random variable that is the hidden state and capital Y to denote 

the observation variable. So, both X t and Y t can take many different values; for our part 



 

 

of speech tag is each X t can take one of the part of speech tags, and each Y t can take 

one of the possible words. So, this my hidden variable hidden state X t and the 

observation Y t. 

The parameters are A, B and pi that we discussed last time. What is A? So A is my state 

transition matrix. So, given that the previous state was i what is the probability that the 

current state will be j? So, here the t as such does not matter what matters is that the state 

j occurred after state i at any given time point. Then I have the parameter pi that is what 

is the probability that this particular state is starts the sequence. So, probability of X 1 

that the first state being the i x state that is my pi i. And then thirdly I have the emission 

matrix. So, where the entries are what is the probability of observing this particular word 

or this observation given the current state. So, this I am denoting like b j y t; at the state j 

what is the probability of emitting the observation variable or observation y. So, either 

three parameters three set of parameters that I have learnt. 

Now, what is given to me? So, I was saying that we are given the corpus not labeled, but 

the word sequences are given. So, this can be seen as my observations are given different 

sentences are given, I knew what are different words occurred in the sentences. So, I can 

say that I am given a set of observations in data. So, here I can say that I am given a set 

of observation sequences that the first observation was the word Y 1 then Y 2 up to some 

Y t, where Y t denote the end of the sentence. So, I am given a set of observation 

sequences and my aim is to find out the optimal set of parameters theta that maximize 

the probability of this observation. So, these observation sequences, so that is where I am 

using Baum Welch algorithm, find out what are the optimal set of parameters theta that 

will maximize the probability of likelihood of observing this observation that is why I 

am using expectation maximization algorithm. 
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So, what is the main intuition of EM? So, idea would be I want to estimate the 

parameters A, B, and pi. So, what I will do? I will start with some random initial 

probabilities for all these parameters; I will initialize them with some random values. So, 

I have all these probabilities. Now, using these initial values, I will try to find out what 

are the probabilities of various state paths. So, on a given sequence, what is the 

probability that a particular state would have occurred given these parameters? So, once I 

have obtained the probabilities of different state paths or different states a different point, 

now I got this probability, I will use that again to compute to re-estimate my parameters. 

So, I will get started with theta zero, I get some theta prime. Now, I will again use the 

theta prime to complete my state paths probabilities again use that to re-compute my 

parameters until it somehow converges. 

So, this is my iterative algorithm. First use some parameters theta to get some likely from 

the data for the hidden variable here that is the states. Once you have that likelihood or 

the probabilities use that to compute my theta. So, what we are doing here? So, I am start 

starting by choosing some initial values of the parameters A, B, and pi. And then I have 

to repeat the following steps until convergence. What is that? Firstly, determine what are 

the probable paths that X t minus 1 that t minus 1 object point I see the state i; at t-th, I 

see the state j and. So, on what is the probability of various state paths. 



 

 

Now, once I have these will teach count the number of times. So, what is important 

expect a number of times, because we are only computing probabilities, we are not 

finding the actual paths. So, count the expected number of transitions a i j as well as the 

expected number of times various emissions b j y t m 8. So, using these state paths can 

you do that, yes, I know what is the probability of X t minus 1 is equal to i; X t is equal 

to j; I can use it to compute an expected value for a i j, and this is what we will be doing. 

So, we will compute a i j, similarly I already know the observation. So, I can also 

computes unexpected vanish for b j y t what is the probability that I see objection y t for 

the particular state j. So, once I computed this a i j and b j y t, I will again estimate my 

parameters theta using these computed values. 

Now, I will go back in the loop, I have this theta, I will compute the probabilities of 

various state paths again compute a i j, b j y t and again compute theta and I repeat that 

until convergence. So, now so all these are interesting here like, firstly, once you are 

given some set of parameters theta it can be either the initial parameters or some 

intermediate parameters how do you actually compute different the probabilities of 

different paths, how do you actually do it. And for that we use a forward backward 

algorithm that is the main concept of this algorithm. 
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So, let us see what is this forward backward algorithm. So, in forward-back backward 

algorithm, we have a forward procedure and a backup procedure. So, so far for 

explaining let me just take show it on paper once. 
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So, what is happening? I am observing this sequence Y 1, Y 2, small y T minus 1 y t, this 

is my observation. And correspondingly, so you can say this is Y 1 is equal to y 1 first 

observation Y 2 is equal to y 2 and so on. And correspondingly there are states, so this is 

my observation and then there are states. So, there will be some state x t this is y t 

observation, this is my state x t is equal to y it can be any of the possible states x t. Now, 

what do I do in this forward backward algorithm, I compute two different probabilities; 

one I called as the forward probability. This is the probability of observing y 1 to y t plus 

and x t is equal to i give my parameter theta. So, this is my alpha t for the ith the state. 

The probability that I am observing y 1 to y t and at t-th point the state is i given my 

parameters theta; Y 1 is equal to y 1, Y 2 is equal to y 2, Y t is equal to small y t and x t 

is equal to y given parameters theta. This is my forward probability. 

Then I compute a backward probability. What is that? This is the probability of 

observing this given this state. So, this is my alpha i t, and this is beta i t that is 

probability that Y t plus 1 is small y t plus 1 up to capital Y t is y t given X t is equal to i 

and theta. So, these are two different probabilities that I stored. So, what do you see here, 

so I am taking just a state at a particular time t a particular state i. Now, why do you 



 

 

actually compute this alpha i t and beta i t, how does that help? Now I have these 

probabilities, I can simply multiply these alpha i t times beta i t to get the probability that 

I observe the sequence and the ith the state. And to actually compute the probability of 

saying that at tth time point the state was i, I can marginalize it by all the possible states 

that can happen at time t. So, I can multiply sigma i t, beta i t and divide by all the 

possible sigma j t alpha j t and beta j t to compute the probability of seeing state i at time 

point t and this is that is how this forward and backward probabilities help. So, you will 

see that in detail. 

So, right now just the formulation. So, I am this higher the sequence, I divided in two 

parts for a given t. This is state i, I have the forward probability alpha i t and a backward 

probability beta i t; alpha i t is this particular sequence and the state, beta i t is the ending 

sequence given this is state; the previous state X t is equal to i. So, now so this is my 

alpha i t. So, now, how do I compute these values of alpha i t? I want to compute this for 

all possible i’s and all possible values of t. So, this is a forward probability. 

So, I have to start with the first point. So, how do I actually compute alpha i 1, what is 

that? So, alpha i 1 from this equation which probability of observing Y 1 is equal to y 1 

and X 1 is i given theta. So, what is the probability of X 1 is equal to i given theta that is 

pi i; this is my pi i, and this probability would be emission from X 1 from the either state. 

So, this will be b i y 1. So, this is how I will compute the initial one alpha i 1 for all 

possible states i. Now, at some point of time, at some point t plus 1, how will I compute 

alpha j t plus one given the previous alpha i t, I have computed. So, alpha j t plus 1, so t 

plus 1 means the probability of seeing the sequence up to Y t plus 1 and the state X t plus 

1 is j. 

So, how can I compute that using the previous alphas? So, I have the previous alpha that 

gives me this. So, alpha i t at the previous time step I had some state, I have the transition 

from i to j, so times a i j and now I have the emission for the t plus 1th observation that is 

b j y t plus 1. And this I can obtain from any of the previous states. So, I have to sum 

over all the possible states. So, from all the previous states at the t-th time step, I can be 

any state i, I have the transition probabilities and the emission probability for t plus 1 and 

that is how I can compute sigma alpha j t plus 1 from all the alpha i t-th. So, this is how 

you can compute your alpha in a recursive manner starting from alpha i 1. 



 

 

Now what will you do for your betas. So, this is a backward procedure. So, what is my 

beta i t this gives me the probability of ending the sequence with y t plus 1 to y t given 

the state i at time, this is my backward procedure. Now, this I again compute recursively 

in alpha i was starting from the first word I was computing alpha i t. In betas because the 

backward procedure, I will first compute beta i capital T, T is the end of the sequence 

and what will the beta i t, so beta i t would be probability of so given that previous the t-

th point state is i having a sequence on t plus 1, but there is no word from t plus 1. So, 

this will always be. So, this is always be 1, this will be a null sequence. So, this is always 

one. Now, I have to compute it recursively for all other beta i at time point t. So, here I 

am going backwards. 

So, you assume that you have computed all the beta j at time t plus 1 and you want to use 

that to compute beta i at time point t, how will you do that? So, this is very similar to 

what you did in the case of alpha. So, we can see this. So, this is beta j at time t plus 1 

transition probabilities from i to j and the emission probabilities probability for the t plus 

1th observation, and you sum over all the possible states at times j so very, very similar 

to what you did in the case of forward procedure. So, that is what you will do in the 

backward procedure for computing beta h in a recursive manner. So, now, you have a 

way that given the set of parameters minus theta you can compute all this alpha and beta. 

So, all the alpha i t is and beta i t you can compute. 

Now, remember what is the next step in the algorithm, you want to find out what are the 

best possible paths or what is the probability of various paths that is what we intended by 

doing this alpha and beta, let us see how exactly we can compute these probabilities of 

various paths. So, I want to compute the probabilities of say probability X is equal to y 

given my observation and parameters theta, also I want to compute X t is equal to y and 

X t plus 1 is equal to j given y and theta, I want to compute both of this. So, if I can 

compute both of this, I can compute all the parameters, I can complete my transition 

probabilities using that, I can compute my initial probabilities using that by taking t is 

equal to 1 and you can also compute my ambition probabilities. So, now, my problem is 

once I computed alphas and betas can I compute these probabilities, so that is what we 

will see next. 
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So, I am giving these some names. So, firstly, I have this gamma i t that gives me the 

probability that at t-th point the state is i given my observations y and theta parameters. 

And similarly, I have zeta i j t that is probability that at t-th point, I have state i; t plus 1 

point, I have state j given y and theta. So, gamma i t is written terms of multiplication of 

alpha i t and beta i t divided by summation over all possible sigma z alpha j t and beta j t 

over all possible change. So, now how do we actually come up with this equation of 

gamma i t and zeta i j t, let us look at it. 

So, here I want to compute probability x t is equal to y given y n theta. So, now, I will 

computed using probability X t is equal to y, Y given theta divided by probability Y 

given theta, this is simple conditions. So, if you forgot that theta, this is nothing but X t is 

equal to i given Y, X t is equal to y, Y divided by probability y, this simple the condition 

probability rule. Now, this one I am writing as summation j is equal to 1 over N, j is 

equal to 1 to N probability X t is equal to j, y given theta. So, now, you can see the 

symmetry in this equation. 

Now, what I have to show that alpha i t times beta i t is probability X t is equal to y, Y 

given theta and that is very easy, because what is alpha i t this is probability y 1 to y t 

plus x t is equal to i. What is beta i t probability of y t plus 1 to y capital T and now X t is 

equal to y is already given for beta, and this is given my parameters theta and this is what 

we are seeing here. This is my alpha i t times beta i t and this is marginalizing over all 



 

 

possible states are time by t. So, this will be sigma, j is equal to 1 to N, alpha j t beta j t. 

So, this gives me the equation for gamma i t. 

Similarly, you can see for zeta i j t that is for probability of X t is equal to i X t plus 1 is 

equal to j Y given Y n theta. So, in the same way, you can write it as probability X t is 

equal to i X t plus 1 is equal to j, Y given theta divided by probability Y given theta that 

will marginalize over all possible i and j. And you will say probability X t is equal to i x t 

plus 1 is equal to j y given theta for all possible values of phi and j. 

Now, what we have to show that this is actually this formula now. So, what is this? So, 

you are given state at time point t and time point t plus 1. So, what you are actually doing 

is that using the forward procedure from y 1 to y t, and you will also get the state i at 

time point t. And you will use the backward procedure because you are given the state at 

time t plus 1 state j, backward procedure for from y t plus 2 up to y capital T. So, this is 

what is captured in alpha i t, and this is captured condition on j in beta j t plus 1. Then 

you will compute the probability of transition from i to j that is a i j and y t plus 1 given j 

that is your b j y t plus 1. So, this equation is nothing but probability of X t is equal to i, 

X t plus 1 is equal to j Y given theta, this whole sequence is there and these two states 

are also there. And similarly you can see for here this is over all the possible values of i 

and j. 

So, I hope this is clear that once I have computed all the possible alpha and beta and the 

previous parameters of there, we can compute this gamma i t and zeta i j t-th that are 

probability of state at a given time and a sequence i and j at time t and t plus 1, this we 

can compute using alpha and beta. Now, coming to the last part that is once I computed 

some probability is over by possible state paths how do I estimate my parameters again, I 

have started with some initial parameters computed this, now I want to re-estimate my 

parameters theta. So, how do I do that? 
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So, now I have to estimate my pi i, a i j and b i v k. So, how do I estimate this pi i is 

probability of seeing the state i at time one. So, now, from these parameters which one 

can give me this value probability that x 1 is equal to i; this I can get from gamma i 1 that 

is that can give me my pi i is probability that at X 1 is i. So, this is to estimate my pi i. 

Next thing I have to estimate is transition probabilities probability of going from state i 

to state j. Now I have computed this. 
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So, how do I compute my a i j, a i j would be at all possible times how many times you 

are having the sequence i n j. So, this will be summation over t zeta i j t, zeta i j t is i 

followed by j divide by over all the times when you are seeing this t. So, when you are 

seeing the state i and this you can compute using your gamma i that is summation over t 

gamma i t, and that will give me my a i j. All the possible cases where all the 

probabilities of i and j occurring together at any point divide by all the probabilities of i 

occurring anywhere, this is my a i j. 

And similarly, how can you compute your b j say v k that is at state j you are emitting v 

k how can you estimate that. So, for that you have to find out whenever you are in state j 

is the observation actually v k, how many times you are in state j by the observation is 

we can divide by number of times you are in state j. So, this is so here the denominator is 

easy that is number of times you are, so this b j v k number of times you are in state j this 

is gamma j t numerator number of times or the probability that you are in state j times the 

observation is actually v k. Now, so at time t, the observation is small y t. So, I can use 

some sort of a simple notation or indicator function 1 v k is equal to y t, so indicator 

function. What is indicator function? So, 1 v k is equal to y t will be 1 if v k is actually y 

t and 0 otherwise this will be my indicator function. 

So, now, whenever if v k is y t whenever I observe y t, I will add it, otherwise it will be 

0. And this is this will give me the emission probabilities. So, I could estimate my pi i, a i 

j as well as b j v k using this zeta i j and gamma i which I computed using my forward 

backward probabilities. And this is one complete pass of this algorithm. Now, I have 

these parameters, I will plug these again to compute alphas and betas; again compute my 

gamma and zetas and again estimate the parameters until it converges, and this is the 

Baum Welch algorithm for learning the parameters of HMM when the label data set is 

not available. So, this gives you a very nice handle on HMMs. 

So, you can apply HMMs, when you have the label data set very easily by learning the 

parameters directly from memories, maximum likelihood estimate, and data beta 

decoding. But even if you get a new problem or a new language furtherer you have to 

compute part-of-speech tag. But you do not have the labels you can use it this Baum 

Welch algorithm to estimate the parameters of a HMM, and then each bit have de coding 

to actually given a new sentence find at part of speech tag sequence. So, you can use that 

for any other sequence label task. 



 

 

So, this completes our discussions on HMMs that were one of the very popular models 

for this part of speech tagging in many other sequence labeling task, but they have 

certain limitations and that is what we will discuss next then that what are these 

limitations, and how do some other models. So, we will go to now some discriminative 

classifiers like maximum entropy models they get rid of these limitations. So, this is for 

HMMs. Let us look at maximum entropy models in the next lecture. 

Thank you. 


