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So, welcome back for the third week of this course. So, in the last week, where we ended 

we were discussing about language modeling, we talked about the basis of language 

modeling then we talked about what how to be evaluate a language model and then we 

came to the topic of smoothing. So, what was the simple idea we discussed, what is my 

advanced smoothing where I add one to each individual count, and accordingly I do 

some normalization in my denominator. And we added by saying there are certain simple 

variance possible like at K, I can also do the unigram prior smoothing by instead of 

adding uniform weight to each word, at a weight that is depending on the probability of 

that word unigram probability for that word. And that we were arguing that might work 

better than simply adding uniform count to each of the bigrams. 

There we had certain parameters like what will be a best way of choosing K and M in 

different models. So, simple answer would be, so there is no unique value that you can 

choose. Suppose you have some held out data, so we can try to find out for which value 

of K and M, you are getting the best publicity for that held out data and that can be one 

possible way of choosing the values of K and M. So, now today, we will talk we will go 

beyond the advanced smoothing and talk about some other advanced smoothing 

methods. 
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So, we will start with two different smoothing methods called Good-Turing smoothing 

and Kneser-Ney smoothing. So, what is the intuition behind using a Good-Turing 

smoothing? So, intuition is essentially I want to find out what should be the probability 

for the words that I have not seen in my training data. So, what Good-Turing is 

smoothing says; so why do not you use the estimate of the things you have seen once in 

your training data you estimate about the things we have not seen. Similarly, whatever 

you have seen twice use that estimate that things you will seen once and like that.  

So, this just thrice to adjust the probability mass, so that the things that was seen twice 

are used to find the probability for the things that was seen once things that was seen 

once are used to estimate the probability for the things that were not seen at all. So, the 

idea is that you we have to use the count of things we have seen once to find the count of 

things we have never seen. 
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So, for that let us first define what is the frequency of frequency. We used this one of the 

earlier lectures also. So, we take this three sentences, I am here, who am, I would like. 

From these sentences, I am trying to construct the frequency of frequency, so that is how 

many words occur ones, how many word occurs twice and so on. So, if you see here, the 

word I occurs thrice, am occurs twice, and the other four words occurs once. So, what 

will my frequency of frequency? I will find out how many of words occurs ones with 

frequency one. So, that is my N 1. So, there are four words here that occur only once. So, 

N 1 is 4. Now, you will see how many words occur twice, so how many words have a 

frequency of 2, so that will I will have 1 here N 3 is 1. So, this is my frequency of 

frequency. So, four words occur once, one word occurs twice, one word occurs thrice. 
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Now, how do I use that in Good-Turing estimate? So, what is the idea? So, this we 

discussed earlier. So, I want to reallocate the probability mass of n-grams that occur r 

plus 1 times in the training data to the n-grams that occur r times, especially you want to 

see the n-grams that occur once to find the probability mass for the n-grams that occur 0 

times, but you that you do that in general. So, the n-grams that occur r plus 1 times used 

that for r times. 

So, now in particular, reallocate the probability mass for n-grams that were seen once for 

those that were never seen. So, now, we should see formally what will be the effective 

probability mass N count that we will get by this Good-Turing estimate. So, let us see 

suppose I want to find out four words that occurred c times, words that occurs c times 

what will be the effective adjusted count after applying Good-Turing estimation, now 

how we defined that? So, what would happen? In my training data, I will have words that 

occur zero times words that occur one time let it be N 0, N 1 words that occur twice N 2 

and so on. So, N 2 numbers that occur twice, similarly now there are N c number of 

words that occurs c times N c plus 1 words that occurs c plus 1 times. 

Now, I want to find I want to use Good-Turing to estimate the count for these words that 

occur c times. So, what it be say we said we will use this probability mass and give it to 

these words. Now how to we distribute. So, what is the probability mass associated with 

the words that occurs c plus 1 time. So, now suppose there are N words or nth bigrams in 



 

 

total. So, now what is the probability mass for the bigrams that occurred or n-gram we 

can say in general that occurred c plus 1 times, you see how many n-grams are there are 

N c plus 1 different n-gram. So, what will be the probability mass for them it will be N c 

plus 1 times c plus 1 divided by the total number of n-grams that are N that is a 

probability mass, yes, and this I am distributing to the words that occur c times. Now, 

how many words are there, there are N c words? 

So, what is the probability that each of them will get divided by N c? Yes, so this is the 

probability mass for that each of them will get. Now, what will be the effective count 

remember how we define the effective count c star such that if I divided by n merely this 

will give me the same probability, so that will tell me c star is N c plus 1 times c plus 1 

divided by N c and that is what we have written here. So, N c in general is the n-grams 

that seen exactly c terms in the corpus. So, by using this definition I can find out what is 

effective count for any word that is occur N c number of times in the corpus, so that is 

what we have seen. 
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So, this is the probability for the words things let us in c times c star n, yes, c star is my 

nothing, but my effective n-gram count. Now, what about the words that will not seen at 

all that are the words that that or whenever I am saying words here it means the n terms 

in general. So, what about the n-grams that did not occur at all matter in data? So, from 

my definition, I will use the probability mass of the words that was seen once. So, what 



 

 

will be the probability mass? So, there are by definition there are N 1 words that was 

seen once. So, each one of them occurs once. So, what is the probability mass? It is N 1 

by N, yes, and this probability mass I will give to the words that was seen 0 times yes. 

Now, you might have a question how much of this each of them individual, we will get. 

So, this is the probability mass that are the word the n-grams are did not occurs in the 

corpus to get that we will get, but how much of this individually each of them will get, so 

if you can just divided by the number of n-grams that did not occur in the corpus. So, we 

will see some by some example how we can be estimate this value. So, here if my count 

is 0, so Good-Turing estimate for the things that for the frequency c when c 0 is N 1 by n 

that we just saw, so that is a effective probability mass that I will give to the all the 

words or n-grams they did not occur in the training data. So, this gives me nice methods 

of estimating the probability for the words that did not occur in my training data. 

(Refer Slide Time: 10:10) 

 

Now, there are certain complications that you might have when you applying this Good-

Turing estimate. So, for a small c, generally you will see that N c is greater than N c plus 

1 that is a number of words having a frequency c is greater than number of words having 

a frequency c plus 1. So, remember what would be empirical law that states that, so that 

is a (Refer Time: 10:34) law that is states that there is a universal relationship. So, this is 

generally good, but it might happen when we go to very, very high frequencies certain 

frequency are not observing that, so this is possible. 



 

 

So, what do we do in general? So, when we go to higher and higher frequencies for 

larger k‘s or larger c’s here we can replace it with some sort of best fit power law and we 

will do some normalizations. So, instead of doing it for each individual k, I might 

actually just fit, so I have N 1, N 2 and so on. And when I go to the higher values, I 

simply fit some sort of power law and that is so that it is normalized and I will obtain the 

same probability mass that is 1. So, this is power law can be fit it. In general, so in 

various toolkits that you might very you might use this method, they do it for only few 

values of k summation few values of k, maybe k is equal to 5 or k is equal to 10. Then 

the formula that we were using might have to be readjusted, but the basic idea was is 

same what we have seen here. 
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So, now suppose you apply this Good-Turing smoothing methods for a corpus like AP 

Neswire academic press news, there are 22 million words and so that is why you are 

seeing for different counts what is the Good-Turing estimate that was seen, this is for 

bigrams. So, what yours observing in the table? So, for the bigrams that occurred 0 

number of times the Good-Turing estimate was 0.0000270; for ones, 0.446; for twice 

0.126. Now, so how do I actually get this number 0.0000270? So, we can just do that 

quickly. 

So, remember for the words that occur zero times what is the total probability that we are 

giving them getting the probability of N 1 divided by N. Now, what is the probability 



 

 

given to the individual word? So, you multiplied by N 0; N 0 is the number of bigrams 

that occurring zero times. What would be the effective count? Effective count we will 

remove this N, yes. So, it will be N 1 divided by N 0. Now, what is N 1, so you need to 

find out how many bigrams occurred once yes that you can find from training data how 

do you find N 0 that is how many bigrams did not occurred in my data. 

Now, if you remember from Shakespeare corpus, so how do we find out how many 

bigrams did not occur at all. So, we need to see what is my vocabulary size, what are 

different unigrams. Suppose in my vocabulary size of V that is my number of unigrams. 

So, how many bigrams are possible? V square bigrams are possible. So, how many 

actually occurred? Suppose I know that out of this some N b bigrams occurred in my 

corpus. So, V square minus N b gives me the bigrams that did not occur at all in my 

corpus. So, this will become my N 0 number of bigrams that did not occurred in my 

corpus. So, this value I obtain by finding out N 1 number of bigrams that occur once 

divided by V square minus N b, N b is number of bigrams in total. So, that is the unique 

bigrams that occur in my corpus. 

Now, what is the other observation that you might have from this table? While looking at 

this table, so for 0 and 1, this is different, but once you start seeing from 2 onwards, what 

is the pattern that you seen. You see that most of the effective counts are the original 

count minus some value like 0.75. So, you see all of these a roughly original value minus 

0.2 to 75. So, now, one might are give why do not I just use c minus 0.75 in maybe give 

a different value to the initial two components that is also done in practice. So, this is 

called the absolute discounting that is what we will see next. 
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So, the idea is that why do not I substract something like 0.75 or some d from each 

bigram that occur say more than once or whatever. And I can have one or two different 

values of d for some initial bigrams, and this is called the absolute discounting methods. 

And you can probably interpolated with my unigram probability that we saw in the last 

lecture to give a better estimate, yes, this is called linear interpolation with the unigram 

probability of the absolute discounting method and that is the formula that we have 

written here. So, this is I am doing some sort of discounting from each bigram count, 

yes, plus I am interpolating it with my unigram probability with weight some lambda w i 

minus 1. Why do I need a weight here, so that when I saw this probability absolute 

discounting w i given w i minus 1 for each individual w i this will add up to 1 that is why 

I need some sort of normalization constant that will make sure that this will add up to 1. 

So, we can keep probably some values of d for count 1 and 2, and otherwise I can use 

these particular interpolation methods. Now, that is why the idea of our other advanced 

smoothing model comes that was our Kneser-Ney smoothing methods. So, what is that? 

So that is can we do better than using the regular unigram correct. So, when before we 

first started with a simple advanced smoothing, we were giving uniform weight to each 

particular n-gram uniform addition. Then from they moved on to unigram prior, we said 

why do we give uniformly we give a higher weight to the words that occur more often in 

my corpus. 
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Now, we have seen can be do better than even this and that is why we will see the 

Kneser-Ney smoothing idea. So, what is the idea? So, know again let us go to the 

Shannon game. Suppose, at this sentence, I cannot see without my reading and have to 

filling this blank. And suppose possibilities are glasses and Francisco and all of us will 

say I should fill in glasses here. Now, take a scenario where reading glasses does not 

occur in my training data and reading Francisco also does not occur in my training data. 

Now, if I use the previous model what will I do? The probability of filling in glasses 

versus Francisco will depend on their unigram probabilities. And suppose this is my data 

from some yours corpus, so I will find probability of Francisco is higher than probability 

of glasses that can very well happened and that means, I will add up filling it Francisco 

here there is not the correct word correct choice here. So, can we do something better 

than simply using their unigram probabilities that is the idea of Kneser-Ney smoothing. 

So, Francisco is more common than glasses in my data, but can I use this idea that in my 

data whenever see Francisco it occurs only after ‘San’, in this occurrence San Francisco. 

On the other hand, whenever I see glasses, it occurs some after multiple different words. 

So, this is the intuition that is I will see given a word what are the other words it comes 

with. So, here if I take word as Francisco, it occurs maybe with only one word, yes, only 

one word San, but glasses occurs with many other words right, it can occur with 

different, different words and this. So, both glasses are occurs with ten different words 



 

 

and Francisco occurs with only one different word. So, what is the intuition? If a word 

occurs with many other words that means, it is more likely to complete this particular 

bigram that we are seeing right now. 

So, reading, after reading, a word is more likely to occur if it has already completed 

many other bigram. So, if it is more commonly used bigrams with many, many other 

words, this will not happen with Francisco because Francisco is used only after San. So, 

given a new context, probably San Francisco is not good choice, but glasses are occur 

many, many other different words. So, after read completely new context glasses is a 

better choice than Francisco. 

Formally, how this method used this intuition? So, in instead of using simple probability 

of this word unigram probability, each probability continuation word, so that is how 

likely is this word to appear as a novel continuation. What do I mean by novel 

continuation how likely it is to complete a bigram or in n-gram? So, how do I find out 

the probability? So, for each word to find this probability as we said we have to count the 

number of bigram types it completes, how many bigrams where it occurs as the last one - 

the final word. Now, for each bigram, whenever it occurs the first time, it was like a 

novel continuation, so that is what we mean by novel continuation probability here that 

how many bigrams it is complete. So, this will be simply, it will be proportional to the 

number of bigrams it is completing. So, here how many w i minus 1 are there such that w 

occurs after that in my corpus. So, that is the probability of continuation. 
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It is a same thing, what is the probability of continuation that should depend on the 

number of bigrams types it completes. Now, how should I normalize it? I want to find 

this probability for each word in the corpus, yes. So, this is proportional to the number of 

bigrams types it completes. So, I should find out in total how many bigram types are 

there that each word is completing, so that is effective their number of bigram types in 

total not totals the number of bigram types, how many different bigram types are there. 

So, here also we are only taking the types, how many different bigram types we are 

completing. 

So, I will normalize it by using all possible bigrams. So, here there says all possible 

bigrams because I am saying the count is greater than 0. In my training data, how many 

bigram types I have seen. So, this will give me the probability continuation of the word 

the w. So, once I have found this probability, I can even go back to my unigram prior 

based absolute discounting method and replace p w i by p continuation w i and that is my 

Kneser-Ney smoothing model. So, instead of using the unigram priors for smoothing, I 

used this Kneser-Ney smoothing by using the continuation probability. So, if I do that a 

frequent word like Francisco occurring only in one context of San will have a low 

continuation probability. 
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So, this will give an model with Kneser-Ney smoothing. You see so all these are there is 

all same this is same now instead of p w i we are put p continuation w i that we get from 

the previous slide whatever formula we wrote in the previous slide that will give me this 

continuation p w i. So, now this one question here that we discus even in the earlier 

example how do we find lambda w i minus 1. So, what was the intuition I gave? The hint 

was that lambda w i minus 1 should be such that summation over k n smoothing of w i 

given w i minus 1 for all w i in my vocabulary should be 1. 

So, now you take it as a simple exercise that suppose I want to find out what will be the 

value of lambda w i minus 1 for this particular formula. And you can assume that d lies 

between 0 to 1. For this particular case, what is the value of lambda? Lambda w i minus 

1 that I will get, so answer is also on this slide. So, you will get lambda w i minus 1 of 

this. So, try to find out if I have to satisfy the constant of the summation of the 

probabilities for all the words should add up to 1, what is the value of lambda that I end 

up with that will give you this value - particular value. 
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So, other than these two models of Good-Turing and Kneser-Ney smoothing, there are 

other smoothing models that you might be able to use. So, one simple idea instead of 

using a new smoothing model why do not we combine various models; so remember we 

always doing that somewhere. So, you computing bigram, I was trying to use the 

probability of the unigram, for unigram priors smoothing, now can I generalized this 

idea. Suppose, I am finding out the trigram probability, trigram language model; now 

from my data I can compute the trigram language model probabilities bigram and 

unigram using the MLE. Can I try to effectively combine these different probability 

models to find my trigrams language model? 

So, there are actually two very, very popular ways in which this can be done one is called 

interpretation based methods, another is called back of language models. So, we will just 

see some simple intuition how this can be combined together. So, what we have seen as I 

increased my N power of my N-gram model increases we also see saw that in my when I 

saw the perplexity values. When I take a larger N-gram, I get lower perplexity I get 

better perplexity that means, the model becomes much better when I take a larger N. But 

what is the problem that happens if I take a larger N, remember why we did all this is 

smoothing because when I am taking larger N, the data becomes more and more is 

sparse. So, many of the actual N-grams become 0, the probability become 0. 



 

 

So, at one side higher N-gram is better, a trigram model is better other side is very, very 

sparse. So, why cannot I take advantage of the both things that is I take a higher order N-

gram model whenever I have the data, but whenever I do not have the data I try to use 

the low N-gram model. So, I do that togetherness single model, so that is the basic idea 

of these model that we will see. So, now general approach is can be combined multiple 

N-gram models to get a single model that can also take the advantage of larger N-gram 

model, but avoid this sparseness problem. 
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So, that is some cases might help to use less context whenever you do not have 

information about larger data, larger context. So, in back off what you will do suppose I 

am computing a trigram language model, so w i given w i minus 1, w i minus 2 

whenever this trigram occurs in my training data I will use the probability as for my 

MLE. But if it does not occur in my training data I will back off to my bigram language 

model so that means, whenever the count of w i minus 1, w i is greater than 0, I will go 

to bi bigram; suppose that is also 0 then I will go to unigram. This is idea of back off 

language model. So, if you have good evidence you go to trigram, otherwise you go to 

bigram, otherwise you go to unigram. On the other hand, interpolation you compute all 

three and just interpolate then together you try to mix these together. 
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So, let us see what do will do in back off language models. So, idea is that I am 

computing a trigram model w i given w i minus 2 I minus 1. So, here this is the previous 

word and this is previous to previous word. So, if I do not have counts for w i minus 2, w 

i minus 1, w i, suppose this is 0 then I use probability w i given w i minus 1. Now, 

suppose count of w i minus 1, w i is also 0, then you go to probability w i. Now, so you 

might add up having some problems with how do I normalize the final probability 

distribution that I will get. So, this is the particular formula, recursive formula of back 

off that you can use. So, back off for this trigram model w i given w i minus 2 w i minus 

1 is P hat w i given w i minus 2 w i minus 1 if the count is greater than 0. 

Now, what is P hat? This is actually similar to my maximum likelihood estimate that you 

will get, but it has been something has been subtracted from there. So, some probability 

mass has been shown from there, so there it when it can be given to the other counts. 

Why we need that suppose you are computing this trigram back off probability model. 

So, in general you are doing it after w i minus 2, w i minus 1, you are finding for various 

words w 1, w 2, w 3 suppose this occurs three times, this occurs two times, this occurs 0 

times.  

So, now, once use the MLE method estimate immediately this will have a probability of 

3 by 5, this I have probability of 2 by 5, suppose there is no other bigram and this will 

have a probability of 0. And now you want to use back off to use probability w three 



 

 

given w i minus 1, but here itself probability mass is adding up to 1. So, how can you use 

the bigram probability? So, for that you might have to reduce some mass from these two 

values, so that is why we are writing P hat and there are different ways you can reduce. 

So, we will take someone simple example we are a doing it by some simple constant, 

you are reducing some simple constants, but this can be proportional also you can 

multiply some (Refer Time: 31:35). So, you will take that is my P hat, it is a reduced 

probability value from my MLE estimate. 

So, now, if the count is greater than 0, I take P hat; if the count is equal to 0, then I have 

to use the previous I have to back off to the bigram model. So, I have to use probability 

w i given w i minus 1 and that is where I back off to this model, but what is interesting 

that you have seeing here. So, this is a recursive definition I am using the back off 

probability of w i given w i minus 1. And I multiplying with some constant again to 

ensure that the probability mass adds up to 1. So, the recursive definition, so how do we 

define probability w i given w i minus 1, again it is P hat w i given w i minus 1 if the 

count is greater than 0; and P hat w n if the count is equal to 0. So, I think it will help, if 

you take a simple example and try to see how do we actually use this definition to 

compute the back off probabilities. 
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So, let us take an example. So, here we are taking a corpus, where we are having only 

four words a, b, c and d and this is one data that is provided. So, what is this is data. So, 



 

 

it is telling how many times a occurs after ab, it occurs four times; on the other hand, b 

occurs after ab - zero times, c occurs after ab - zero times. Similarly, a occurs after b - 5 

times, b occur after b - 3 times, c occur after b - 0 times, and also the individual word 

words a occurs 8 times, b occurs 9, times c occurs 8 times d occurs 7 times.  

Now, given this data, you are ask to compute the back off probability model of w n given 

w n minus 1 where the previous word is b, and previous to previous word is a. And you 

have also told that you can use this simple definition for P hat that is P x minus 1 by 8. 

Suppose, I want to use that to find out the back off probability distribution, so that is 

nothing but probability back off of word given a and b; a is pervious to previous word, 

and b is the previous word. 
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So, let us try to do that. So, I want to find out the back off probability w given a, b. So, 

this would be w can take a, b, c and d. So, right now from my table, what are the counts, 

I am seeing a occurs, so this occurs four times, this occurs zero times, this occurs zero 

times, this occurs zero times. So, assumed by definition of back off probability, I can say 

that this probability will be P hat a given ab, because the count is greater than the 0, but 

this will be lambda times previous two words ab. So, this lambda ab a constant times 

back off probability of so I will go to the previous word back off probability of b given b, 

this will be lambda a b times back off back off probability of c given the previous word 

b; and this will be lambda a b back off probability of d given b. 



 

 

So, what it say is that now you have to compute the back off probability of b given b, c 

given b, and d given b. So, again we use the definition. So, now, I am computing back 

off probability of w given b, and w is equal to a, b, c and d. Now, I see a occurs 5 times, 

b occurs 3 times, c occurs 0 times, d occurs 0 times. So, as per my definition this will be 

P hat a given b what will be that that will be 5 by 8, yes minus 1 by 8 that is 4 by 8. What 

will be this P hat b given b 3 by 8 minus 1 by 8 that is 2 by 8? Now, what will be this? 

This occurs zero number of times. So, this will be lambda of b times unigram probability 

of c maybe P hat c. Now, what is this? We can see from my data what is P hat c. So, c 

occurs a times, yes and total number of, so what is the total of my unigram count, if you 

will add up to 32. 
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So, this p c the MLE varies, so it is lambda b times p c minus 1 by 8, p c is 8 by 32 yes. 

So, this will become 8 by 32 - 1 by 4 minus 1 by 8 that will be lambda b times 1 by 8. 

Similarly, for d is equal to 0, I can write lambda b times P hat d that is that is lambda b 

times p d minus 1 by 8 that is lambda b times p d here was 7 by 32 minus 1 by 8. So, that 

would be lambda b times this will be 7 minus 4 3 by 32.  

So, suppose you get these values, now how will you go to the probability P w given a b 

you have to first find what is the back off probabilities of for these two cases c and d. So, 

for that you define the what is the value of lambda b, now how do you find lambda b if 

you normalized this right. So, you will say lambda b times 1 by 8 plus 3 by 32 plus 4 by 



 

 

8 plus 2 by 8 should give me 1, right this should be 1 if you sum over all the words. So, 

what this is? This say lambda b times 7 by 32 is equal to 1 minus 6 by 8 that is 2 by 8. 

So, what is lambda b? So, we will get, you will get this 8 by 7. 

So, once a we substitute add up this 8 by 7 here that will give you this probability 8. So, 

you will find this probability and this probability also. So, you have the back off 

probability for this. Now, put this back off probability here, and we have a constant how 

do you find this constant, again you will have to normalized it lambda a b times 

summation of this plus this probability should add up to one that will give you my 

lambda a b and also give you this probability distribution. So, that is why you find the 

back off probability distribution using this recursive definition. 
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And what do you do linear interpolation, we have different unigram, bigram, trigram 

models, I try to interpret them in different proportions. So, what we are doing here? We 

have computed a trigram model, bigram model, unigram model and different proportions 

lambda 1, lambda 2, lambda 3 are given to this, so such that they will add up to 1. In 

general you can also conditional lambdas on the context, what is your previous and 

previous-to-previous word the lambda might depend on that. So, this is the same 

equation except that now lambda is a depending on the context. 
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And now the question might be how do I choose a held-out corpus, how do I choose my 

lambdas, so that you will do as we say earlier you will have an held-out corpus, you will 

find out which values are lambda gives you the highest probability and that that lambdas 

you can has for your smoothing. So, that were we finish our topic of language model. So, 

we covered lot of simple smoothing methods, and some advanced smoothing methods 

and then we will now go to the next topic of so we will start with the topic of 

morphology, so that will be the topic of the next lecture. 


