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Hi, so we talk about divide and conquer paradigm, so this is a divide technique, this is algorithm 

technique to solve the algorithm problem.  
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So it has basically three step, first one is divide step. So we have given a problem of size n, so 

what we do in this step we divide the problem into sub problems. We divide the problems into 

sub problems, problems are size. And next we conquer the sub problem by solving them 

recursively that is the conquer step. We solve the sub problems recursively. And the last step is 

the combine step, so in the combine step, so we have now solution of the sub problems. 



 

Now to combine step we combine the solution of the sub problems to get the solution of the 

whole problems. So we combine the solutions of the sub problems to get the solution of the 

whole problem or the original problem, of the whole problem. Okay, so this is the basically the 

steps, so let us take an example, so we have seen the marge sort. So in marge sort what we are 

doing, we have given the array of size A and we need to sort it. 

 

So this is the problem of size n, it is a sorting problem. So what we are doing, we are going to the 

middle of the array and we divide the array into two sub arrays. Now we recursively saw, so that 

is the divide step. Now we recursively solving this sub array and this sub array, that is the 

conquer step. Now once we have the solution for solution of this, once of these two sub arrays 

sorted.  

 

Then we are combining by calling the merge sub routine which is linear time algorithm to have a 

sorted array, total sorted array. So divide step is to where in the marge sort, conquer step is we 

are solving these two sub array recursively and then combine step is basically the merge sub 

routine. That is we have two sorted array, now we are calling the merge sub routine to sort the 

array. 
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So now we have got the recurrence of the marge sort which is basically T(n)=2T(n/2)+θ(n). So 

this 2 is basically denoting the number of sub problems, number of sub problems. And this n/2 is 

denoting the size of the sub problems and this is the cost for divide and combining, both for the 

divide and combine step, okay. 

 

And now we know how to solve this by master method, this is basically θ(nlogn). Okay, so now 

we talk about some other divide and conquer algorithm. So the next one is binary search.  
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So in binary search what is the problem, problem is we have given a sorted array and we need to 

find out an element in the array whether if it is there we will return that and otherwise we will 

say no. 

 

So we need to find an element in a sorted array. This is the problem. So how we can use the 

divide and conquer technique here, so we have a sorted array, say for example 3, 5, 6, 8, 9, 10, 

11, suppose this is our given array. Now suppose we are going to find whether 9 is there or not, 

that is the our x, we are trying to see, we are trying to search the element 9 in this sorted array, so 

what we  do, so we first check in the middle, so this is 1, 2, 3, 4, 5, 6, 7, so we check in the 

middle so middle is basically this one so A[4], so we check with A[4] whether A[4] is matching 

with x or not, if not we will check, if it is not matching so you are not lucky. 

 

So we check whether 9 is greater than this middle or not, if it is greater than so we will look at 

the rights of array, we will again search in the rights of array. Now if it is less than we will look 

at the lefts of array, so that is the divide step, and in the conquered step we will be the recursively 

looking at the that sub array and then so 9 so we will go for here, say then we will check with 



this it is less than so we will look at the left sub array of this sub array so it is 9 so matching, 

done. 

 

So this is the divide and conquer algorithm, so now what is the recurrence here, the recurrence is 

basically we are we are dividing the problem into, basically we have one sub problem we are not 

looking into both the sub arrays we are looking into one sub array, so this is basically one T(n/2) 

+ the cost we are spending for dividend combining, so that is basically θ(10 constant time here 

we are spending. 

 

So again by master method we can see this is basically θn so this a logarithmic algorithm for 

finding the, finding an element in a sorted arrays. Now the next problem is powering a number. 
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Okay, so we want to find out a
n
 where n is a natural number, say it could be 1000, n could be 100 

something like that, so we want to find a
n
 so this is the problem a and n are given so you want to 

have, we want to find a
n 

so how we can do so many approaches, so we can multiply a, a…..a  so 

n-1 times. 

 



So that will give us a
n
 when the time complexity of that is basically order of n because we are 

doing  n multiplication, now we want to see whether we can use the divide and conquer 

algorithm to solve this problem, okay, so for that we need to write the recursive form of this a
n
 

can be written a
n/2 

x a
n/2

 if n is even, otherwise 
 
a

n/2 -1/2
 
 
x a

n/2 -1/2 
x a

 
if n is odd, so this is basically 

our divide step.  

 

So we are, we have a problem of size a, we are going to find out a
n,

 
 
we divide the problem into 

two sub problems
 
basically we calculate this once so a

n/2  
once we have the solution of this sub 

problem that we will do in the conquer step then we multiply it twice we get the solution of the 

whole problem, so what is the recurrence, recurrence is, so we are just computing a
n/2  

or this 

once and then in the combine step we are just multiplying if it is n is odd we are multiplying this 

again with n, so this is basically, so this is the size of the sub problems, we are only computing 

one sub problem one a
n/2  

and then this the cost for divide and conquer, I mean conquer, I mean 

sorry divide and combine, so combine phase is basically we are multiplying two numbers. 

 

So that is the same as binary search recurrence so the solution is this again by the master method 

of case 2, okay. So the next problem is finding the in a Fibonacci number.  
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So finding in a Fibonacci number, so what is in a, what is the first Fibonacci number we start 

with 0, 1 then we add these two, 1 , 2, 3, 5, 8, like this so this is we can say 0 Fibonacci number 

or yeah so the form is this Fn = 0 if n is 0, we can say we are starting with F0, 1 if n is 1 and the 

other than this we have n-2 + this is a recursive form of the Fibonacci number, okay.  

 

So now the question is how we can find the, in a Fibonacci number, n is another n, n is the say 

we want to find 1000 Fibonacci number  F1000’s, so how we can do that, that is the problem, okay. 

So one way is data projects what, we can just keep on calculating the Fibonacci numbers. 

 

So just like this and ultimately we will go to the Fn like this, so we will keep on calculating the 

Fibonacci number and you store the last two Fibonacci number and then we get the by adding 

these two and we get the next Fibonacci number, so what is the time complexity for that, is 

basically O(n), so now we have to see whether we can use some divide and conquer approach to 

solve this problem to find any Fibonacci number. 

 

Okay so for that we know that in a Fibonacci number can be written as ϕ
n
/√5 where 5 is the 

golden rescue which is basically (1+ √5) /2 so one root of that, so that is golden rescue, this is 

also called golden rescue, now if we can compute ϕ
n
 then we can get that in a Fibonacci number, 

but this is looks like a polynomial number but here we are dealing with the real numbers. So we 

have to see that how we can do the error correctly, error rounding the error up. 

 

So all those issues will come, so this is not realistic approach to get a log in time complexity. So 

we will look at a different method which is coming from this formula.  
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So fn + 1, fn, fn, fn-1 these can be written as, so this can be written as 1, 1, 1, 0 to the power n so 

this is a theorem while fn is denoting by the n
th

 Fibonacci number, so we can easily prove this 

theorem by induction so best case is, n = 1. 

 

So for n = 1 this is second F1, F0 so this is nothing but 1,1,1,0 so this is true for n =1. Now we 

assume this is true for n= k, so that means if k+1, fk, fk, fk-1 this is basically 1,1,1,0 to the power 

k, now this is our induction hypothesis. Now we have to prove that this is true for n= k+1, okay. 

So for that we can just use this so k+1 so k+2, fk+1, fk, these can be written as (fk+1, fk, fk, fk-1) x 

(1110) this we can easily check. 

 

Now for this we are using the induction hypothesis so this is 1110 to the power k and this is 

(1110), so this is basically (1110)
k+1

. So the result is true for n = k+1, so by the method of 

induction we can say that result is true for all n. So this theorem is true, now once this theorem is 

true now to find the in a Fibonacci number basically we have compute this a
n
 where a is this 

matrix. 

 



So this is just a 2 b y 2 matrix so this is same as powering a number, powering a matrix but this 

matrix is a constant matrix so we can easily use that recurrence for this power similar to 

powering a number and we can solve it by log n time. So this is the divide and conquer technique 

for this problem, okay. So next we will talk about the matrix multiplication problem and we can 

see how we can use the divide and conquer approach for that. 
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So okay, so suppose we have given two matrix (aij) n x n both are n x n and we have a C matrix 

which is basically their multiplication, so C is also a n x n matrix Cij now we know c, Cij is the 

summation of aij, aik, bkj. K = 1 to n, this is basically then we take the higher throw of a j
th 

column 

of b and then we do the inner product. So, so how to get cij, we can have the standard c to put for 

this, so we are starting from i 1 to n, then j 1 to n, okay, and then we take this 0 and then we can 

have k 1 to n, cij is basically, cij+aik x bkj that is it. So this is the code, this is in, this is the standard 

code for matrix multiplication and what is the time complexity for this code? We have 3, 4 of our 

loops each of size n so the time is order of n
3
.  

 



So this is the time for problematic standard matrix multiplication formulae, matrix multiplication 

code. Now the question is whether we can do some divide and conquer algorithm here or not to 

improve this time complexity.  
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So for that what we do, we just divide the matrix into sub matrices a,b,c,d and B e,f,g,h so this is 

each of this is just in by 2xn/2, this is just the sub matrices, okay. Now C we denote r,s,t,u, this is 

also sub matrices, so basically R is basically what, r is basically ae+bg, a is basically af+bh, t is 

basically ce+bg and u is basically this into this, so cf+bh, okay. 

 

So this is the divide step, so we divide the problem into sub problems because these matrix 

multiplication of size, lesser size, earlier it was in cross matrix, now this is n/2 x n/2 matrix so we 

reduce the problem into sub problems, here size is n/2 x n/2. Now how many matrix 

multiplication on there, so there are1, 2, 3, 4, 5, 6, 7, 8, matrix multiplication and how many 

addition is there, four addition. So what is the time complexity, now in the conquered step we 

will recursively solve this sub problems and then once we have solution this sub problems in the 

combine step we will just do the addition. 

 



So this is basically, we have 8 matrix multiplication plus the cost of the addition, we are having 

four addition, but each addition takes how much time so this is basically in cross n/2 x n/2 matrix 

P matrix plus the Q matrix, so n/2 + n/2 so this will take order of n
2
 time, because basically this 

is a vector, so we are doing the position addition order of n
2
, so this is basically order of n

2
. 

Okay, so this is basically if we apply the master method this will give us order of n
3
 which is not 

better than the standard matrix multiplication. 

 

So the question is how we can improve this, so idea is, so this idea is from stressions, idea is so 

here we are doing 8 multiplication, instead of 8 multiplication if we can reduce just one 

multiplication, just seven with a more addition, so addition cost will be taken care by Ɵ(n
2
), 

suppose we are instead of four addition if you are doing 50 addition, 20 addition that will be 

coming under Ɵ(n
2
). So that, then in that case the time complexity will be reduced like log7 n

2
, 

which is better than n
3
.  

 

So we will, we will discuss the stressions idea, so how stression is able to reduce the 

multiplication, then addition, so for that stressions is computing some intermediate terms.  
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So P2 is basically several terms, P4 is (b x g) + ( g – c) P5 is (a+ d)  x (e + h) P6 is (b – d) (g + h) 

P7 is (a – c) x (e + f), now r is basically P5 + P4 – P2 + P6, this is P1 + P2, t is P3 + P4, q is P5 + P1 – 

P3 – P7, okay, so this is the intermediate term so we have to we can verify, so we can verify this r 

here then it can remaining thing you can check whether this is okay or not. 

 

So what is P1 of r is basically it is telling P1 + P2 now what is P1, P1 is basically this one so af – 

ah + P2 is ah + bh so this is basically af + bh which is basically af + bh which is basically yes, so 

you can just verify this is working fine, so remaining term you can just verify, so this is the idea, 

so look at here we are just doing the 7 multiplication to get this value P1 P2 up to P7 but we are 

having more addition, here we are all addition subtraction is basically addition. 

 

So how many addition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 this is 15 16 17 18 so we are 

having 18 addition but we could able to reduce the multiplication by from 8 to 7 so that is the 

idea so that way, so what is the time complexity, so time complexity is basically the recurrence 

we got here is T(n) = so 7 multiplication we reduce the problem into sub problems and how 

many sub problems 7 sub problems, now we recurrence only solve the sub problems and then we 

have this. 

 

Combined step to get the solution of the whole problem, so this is basically so 18 addition but 

that will be taken care by this part so this basically by master method this is the case one, so this 

log of n
log

 of 7/2 which is n 
2.81

 which is much more better than n
3. 

So this is the idea of stressions 

so this is the stressions idea, okay, so this is another example of divide and conquer algorithm, so 

we can use, we can solve this matrix multiplication problem. 

 

With the help of divide and conquer algorithm. So in the next class we will be talking about 

another different conquer algorithm which is quick sort and we will see comparison of the quick 

sort, so we stop now, thank you.       

       


