
NPTEL 

NPTEL ONLINE CERTIFICATION COURSE 

 

Course Name 

Fundamental Algorithms: 

Design and Analysis 

 

by 

Prof. Sourav Mukhopadhyay 

Department of Mathematics 

IIT Kharagpur 

 

Lecture 16: Graph Algorithm 

 

Okay, we will talk about graph algorithm today. So let us just quickly recap what is a 

graph.  

 

(Refer Slide Time: 00:25)  

 

 

 

So graph is basically (V, E) so V is the set of all vertices, it is the vertex and E which is 

basically the edges, it is a subset of V+E. And there are two types of graph, one is 

directed graph or di-graph and undirected graph. 



 

In the undirected graph there is no order in the edge. Okay, we can take an example of a 

graph, suppose we have v1, v2, v3, v4 four vertices 1, 2, 3, 4 so and suppose these are the 

edges we have, okay. So this is a graph, so we have the edges from 2-1 like this. So this is 

an directed graph, now if you do not have the direction, then it is called a undirected 

graph.   

 

So now how we can represent a graph in a computer, so there are two ways we can 

present that, one is adjacency matrix. So what we do, we basically have a matrix with 

these are the vertex so there are in vertex and these, so here we have four vertices so 1, 2, 

3, 4 and 1, 2, 3, 4. Now whenever we have edge, so from v1 there is next to any vertex so 

this is basically 0. 

 

And from v2 we have edge from v1 so this is 1, and from v2 we have edge to v4 this is one 

remaining on 0 and from v3 we have edge to v1 only remaining as 0, and from v4 we have 

edge to v1. So this is the adjacency matrix representation of a graph. So just whenever we 

have a 1 that means we have a edge from that vertex to this vertex. Okay, this is problem 

with this is, if the, this matrix could be a dense matrix, because if there are less number of 

edge and there are size of the vertex is more then this is a dense matrix. 

 

Unusually we have to store this matrix where many elements are 0, so this two 

dimensional array. So to avoid this we can just use the adjacency list, we can use 

adjacency list. So that means we use link this for each of this vertices, so list for v1, list 

probably one is empty because no connection from list for v2 is basically. 

 

So we have this vertices connected to, we form v2 where correcting. So from v2 we have 

(1, 4), so similarly list of v3 is basically 1, I mean basically v1 a list of v4 is also v1. So 

this is the list representation, so our graph is not a fully connected graph or the number of 



edges are less then this is good way because this is taking less memory, because we just 

use the list of this whenever we have edge we have a note for that. 

 

Okay, so now we can see what is the number of edges can be. So if there are, if it is, 

everybody is having X to if we take any two pair of vertex then if we have a edge, then 

the number of 8 can be bounded by this okay, this is the complete graph. So log(E) is 

basically this we will use okay, this result we will use somehow when we talk about iron 

complexity of some graphs algorithm. 

 

Okay, now we talk about a specific problem, graph problem which is a minimum 

spanning tree problem (MST) okay.  

 

(Refer Slide Time: 05:10) 

 

 

  

So the problem is suppose we have given a graph, this is a directed graph and we have to 

find the minimum spanning tree, so what is a tree, what is a spanning tree? If we have a 

graph the spanning tree which is a tree which must cover all the vertices, so that is the 

spanning tree.  



 

So among all the spanning tree it should be minimum. So w(T) is the minimum among all 

the, yeah so w(T) is basically, this is the weight of your spanning tree. So if we have a 

spanning tree and T this is the weight of the spanning tree, so weight, we take the sum of 

all the edges. Now we are looking for minimum spanning tree, so we may have many 

trees then among this we want to find whichever is the minimum.  

 

So we can take some examples, suppose this our graph, suppose this is our graph point 2, 

3, 5, vertex and if we have say, 1, 2, 3, 4, 5 okay or say 1 is -3 suppose this is the graph 

and we have to find out the minimum, so what are the spanning tree we can have, so this 

is, so this one, this one, this one so it must cover all the vertices and there should not be 

any cycle.  

 

So this is a spanning tree, now this spanning tree weight is, to this weight of this spanning 

tree is 6+9 okay then we can have this, this, this and that one will be, so we can remove 

this, so we can have this, this, this spanning tree so this will be the 2, is there any other 

spanning tree, so we can have the these yeah these two, so among this, this spanning tree 

is the less weight, so this is the minimum spanning tree available. 

 

Okay so we will talk about the algorithm how to find the minimum spanning tree for a 

given graph, so before that let us take an example, it is a very small one, let us take a little 

bigger graph,  okay.  

 

(Refer Slide Time: 08:01)  

 



 

 

So let us draw a graph with some more vertices okay so this is 6 these are weight A 

weight 5, 14, 8, 3, 10 okay so suppose this is our given graph and we are going to find the 

minimum spanning tree of this graph now can you tell me which are the edges must be 

there in the spanning tree. 

 

These two edges why because this is the only way we can connect the connect these two 

nodes these two nodes as to be covered in the spanning tree so this is the only way we 

can connect so these two edge must be there in the minimum spanning tree then what is 

the next edge we can take this one and then may be this one and then inserted of taking 

this we can this one and this one may be and then we can take this one okay. 

 

So this is covering all the vertices and this 3 is the minimum weight edge among all the 

weights, so 3 is there in the minimum spanning tree and there is a theorem that minimum 

weight should be there in the minimum spanning tree but this, so we will take about 

greedy approach. So if you are greedy because first attempt the three to be in okay, so 

that is the greedy choice, okay we will talk about greedy approach screens algorithm, so 

let us just check before that greedy we want to check whether we can use the any sense of 

dynamic programming problem can be applied here. 



 

So for that we need to check the what is called, we will come back with this graph, what 

is called optimal sub structure we check whether optimal sub structure property is there 

or not.  

 

(Refer Slide Time: 10:36)  

 

 

 

Optimal sub structure, this is the first hallmark for the dynamic following problem so 

suppose we have a minimum spanning tree of a let t, suppose if T is a minimum spanning 

tree of G and T is like this okay, so this is not capital t, okay among this let us cut one 

vertex u v okay, I say this is u v cut, now this we will remove.  

 

So this is no more in the tree now this is a this is soft tree, now if we take this sub tree T1 

and this is T2 then we take the graph G1 which is covering all the vertices of this is the 

induced graph by T1 so we take all the vertices over her and there are all the edges which 

was there in the G but with that these many vertices with the connecting this vertices that 

is the induced graph of T1 and similarly this is the induced graph of T2 G2 now if we can 



prove this T1 is the MST for G1 and T2 is the MST for G2 then this is the optimal sub 

structure. 

 

 That means if we have a solution for the whole problem and if with that will contain the 

solution of the sub problems I mean yeah so now how to prove this now to prove this 

again cut pates techniques so W(T) is basically this weight + W(T1) + W(T2) oaky now 

suppose we assume that T1 is not a MST of this so that means we have another graph 

which is T1’ which is a MST of this G1 so that means W(T1)’ is less than equal to W(T1) 

now we consider a new path T’ which is basically T1 and then we take this u, v and we 

take T2. 

 

And that weight of this is so this is a spanning tree so weight of the spanning tree is 

basically weight of this T1 W of this which is less than equal to W( > W(T) so which 

context the fact that T is spanning tree so  this is cut and paste technique so we will prove 

we have using contention we prove that this T1 is the same spanning two is the base so 

optimal sub structure is pestering so we could use thing of the dynamic programming so 

fro that second handle hall mark also we have to check over lapping sub problems.  

 

So but we want to use real powerful technique which called greedy technique to solve 

this problem so we have to see what is the hall mark for greedy approach. 

 

 

 

 

 

(Refer Slide Time: 14:23)  

 



. 

 

Yeah so hallmark for greedy algorithm so it is telling the locally of a locally optimal 

choices globally optimal, a locally optimal choice is globally optimal. So if we have this 

hallmark then we can think of going for a greedy approach so this is coming from so for 

this minimum spanning problem. 

 

This theorem is telling to go for it, so let TBA, T be the MST of G and you take any 

subset of V so V is the set of artistes we take and suppose (u, v) is the least to it h 

connecting a and a complement V-A and then these h must be there in the minimized 

spanning tree, so that mean we have a set A and this is the A complement the remaining 

set, so if this is the h which is the bridge h and which is the minimum weight. 

 

That could be another h which are BJ so among this BJ this is the minimum weight age 

so this theorem is telling this has to be there in the minimum spanning tree so this is the 

greedy approach so this is the locally optimal choice would be the root globally optimize 

so we cannot ignore this so we have to add this in the minimum spanning tree, so this is 

the starting point of the prim’s algorithm. 

 



So we will start with the source vertex and we will check the connecting vertex which is 

the minimum vertex that and slowly we will capture the other nodes and we will grow the 

tree, okay. So that is the idea, so let us go for the go for the prim’s algorithm. So this 

prove I am not going to details but this proof can be again derived from the 

[indiscernible][00:17:17] technique. 

 

(Refer Slide Time: 17:21)  

 

 

 

Now I am going to the prim’s algorithm which is based on this theorem which is the 

greedy algorithm, okay. So idea is to so idea is to maintain a priority queue maintain V- 1 

elements what is says as a priority queue and we keep each vertices as the so this is the 

vertices which are not in A, A complement and this is the A, A is starting from S and we 

key all the vertices which are basically the B or edge minimum weight from this to the 

any vertices over here. 

 

So that we have to write key each vertex in Q if the weight of the least to it weight h 

connecting it to a vertex A, okay. So these are so we in initially we put every key values 

infinity other than this so we put the key value of S is 0 other is infinity because nothing 



has explored and then slowly we will capture the minimum weight and we will store we 

will capture the vertex into this set A and slowly we will grow the tree like this, okay. So 

let us write the pseudo code for this, okay.  

(Refer Slide Time: 19:42)  

 

 

 

So this is the, so Q, so initialize which we have, this is the priority Q, we are putting 

everything there and now we are assigning key value of each is infinity for all V except 

the key vertex which is the starting vertex for some. We have to start with some vertex 

and we have to slowly grow the tree and now this is a while loop while Q is not empty. 

 

We extract the minimum and extracting from the Q means we are deleting from the Q 

and we are putting into the A. Now once it is in the A now we check the other so it is in 

the A now we check the all the adjacent in your so this U and we check their, this key 

value whether these could be change or not, okay. Now for each fee which is in the 

adjacent list of Q, so that means there are some articles G, V1, V2. So these are direct so 

we check the key value. 

 



So do if, if v is in Q still in Q which is not in A then and if this h is less than p(a) then 

what we do we, we just replace the key value, then p(v) will be replaced by w(u,v) this is 

the, this operation is called decrease key operation so we have to go to that position and 

we have to change this value decrease key operation.  

 

And here so we are changing our key value of v now we have to put a node who is 

responsible for this change, whose node u, so that we needed to get that h, because it may 

again change for some other vertices other u so we have to take care of that part in this 

responsibility vector π(e) is u so this is called response, this is sort of v, v is responsible 

for this change so that we can get the that h. so finally v at the end this v and the 

responsibility this will form the MST, okay so this is the code, this is basically we are just 

starting with the vertices s and we are we can, we are extracting the minimum and each 

time we are getting one new vertices in here and slowly we are going the tree. 

 

Now let us take an example, the same on the same graph, okay so this was our graph let 

me write this 14,8,3,10,7,9,15 so this is the graph we want to get the, we want to apply 

the prim algorithm on this graph. So let us start with this s, suppose this is our source 

vertices then what else could we taking as a source vertices. Now we put every key value 

as infinity other than this, this is the initialization step, and then what we do, we just show 

this is everything so we extract the mean, extract the mean from the Q so this will be s so 

we put this which are in A and this is in V-A which is basically the Q. 

 

Okay, so now we so this is, so now, so this is, this is has been in A now we check this all 

the adjacent instead of this of u, so these are the vertices which are this, so now we 

change their key value this was infinity, now this is 7, this is 15, and this is 10, so this is 

the key value you have to change by going to the pivot Q. So now we will take the 

minimum among this key value so this is the minimum, okay and, and for this change 

these are the responsibility so this is the responsibility vector for this change and this is 

the minimum. 



 

So now we will take this as u now, so this will change this value to 9, 12 and this is 

already in the Q so no need to do anything and these are the responsibility vector. Now 

which is the minimum now, 9 is the, so 7,12,15,10 so now we choose yeah, so now we 

choose 9, no sorry so 9,10 yeah now we choose 9 so and this is the responsibility vector, 

so this, this is the responsibility vector and now 9 is gone so for 9 there is only one h, so 

next minimum is 10, so 10 is the minimum so we choose this as u, so for this u these are 

the, this is already there, so these are the h, so this will be 3, this will be 8, okay. 

And this is responsible for, so for this change this is the responsibility vector, okay. Now 

the next is 3, now for this 3 we have this, this is already there, this is, this is 8 and now 

this is basically, this is 8, 8 was the minimum so this is 14 so we will not change this and 

now the next minimum is 8, so for this 8 so sorry we have another vertices over here 5 

mean is that. Oh my god, so if mean is that then anyway thing would change here, so 

yeah, when is that vertices anyway so we just ignore that, so now we have this, this is 8, 

so 8 this is, this is 12, this is 6 so this will change to 6 and now this is the responsible 

vector for this, okay. 

 

Now everything is in, now we take all the vertices and their corresponding responsibility 

vector, so this one because it was earlier change by this, now this is responsible for this, 

so this why, that is why this will come there this will be there, this and this will again, 

this will be there this, okay so this is the tree. So we have to check the repeat because this 

responsibility the vector is changing and for this vector key who is responsible.  

 

So ultimately this is changing many time. So finally the final one we have to take, now 

what is the time complexity for this code, so the time is basically, so time is basically this 

is the, this is total this is the initialization phase and this we are doing three times and this 

is the, so let me just erase this            

 



Okay so this is basically again v times but here we are doing this for, this is we are doing 

this for degree (u) okay now this degree ∑ of degree (u) is basically order of E, this is 

coming from LA which is called Hans [indiscernible][00:28:37], so here we are 

decreasing the key and oh here we are extract the minimum so the time is basically.  

 

 

 

 

 

 

 

 

(Refer Slide Time: 28:55)  

 

 

 

So the time for fields algorithm is basically how much time, time we need for extract the 

minimum + how much time we need for decrease the key okay so now depending on the, 

which data structure we are using this halo will be different, suppose we are using a 

simple array for this pivot q or if you are using a heap, so this will be changing so, so this 



Q how we are maintaining this so this is the tree extract the mean and this is the time for 

dictate the key.  

 

And so this is the total time for Pn algorithm so if we are use the array, array 

implementation for this Q then this is basically order of v I mean this is constant time 

because we are just going to that position and we decrease and the total time will be order 

of. 

 

V
2
 and for heap binary heap this is basically order of logv and this is also order or logv 

we need to call the maximum mean if the mean if and this is order of E logv okay if we 

use the few and keep and some amount analysis in the washed case it will be E + Elogv is 

based one but this is using the fibro active data structure if we have probing our syllabus, 

and this is the washed case for using the data structure so this is the this is the time 

complexity for the means algorithm. 

 

 

(Refer Slide Time: 30:57) 

 

 

 



Okay so this is we will work out the primis algorithm example, this is the graph we have 

taken originally so we put every vertex degree as infinity, and except one vertex which is 

this vertex we are taking, so we are starting this, so this is the vertex which is in A and 

the remaining vertex in E – A. So we will put the degree of this vertex is 0 and everything 

we put into the √q, now if we extract the minimum so these will be the minimum. 

 

So this is our now u and this will be in a, so we will start with these and we slowly grow 

the tree. Now we check the adjacency vertex of this, so these are the adjacency vertex so 

this degree we have to check, so this degree was infinity now it is 10 and this is the 

responsible for this so we put a arrow mark here, and this is infinity this is now 15 so this 

is the responsible vertex for this, this change and this was now this is 7 and this is the 

responsible vertex for this change of this 7. 

 

Okay, so now who is the minimum, now among these 7 is the minimum so you put this is 

in A and this is now u so we have to check all the adjacent vertex of u so this is already in 

A so it will not do anything, so this is becoming 9 and this is becoming 12 and this is 

becoming 5, okay. So now which the minimum among this so 5 is the minimum so we 

will put this into the, and these are the responsibility vector so for this changes these are 

the responsibility vector because these nodes is responsible for. 

 

This to become 5 okay, so now 5 is the minimum now who are the adjacent to this, so 

this is 12, now we have a 4 so now it was responsible here now we have a this vertex 

which is responsible to make this as 6, so this is now 6 and then we take this, so this is 

already in A so we will not be going to do anything so this, so this is now 10 but now it is 

6 so it will change into 8, it will change into 8 and now this will be the, now this vertex is 

responsible for this change, and now. 

 

This is also and this now 14 okay, so these are the adjacent vertexes, we made the 

change, now the next minimum is 6 so if you take 6 now for 6 all the vertexes, adjacent 



vertexes are in A so we are not going to do anything, now the next minimum is 8 so if 

you take 8 then you see it is basically we have this is already there so this is going to 

change, this is 3 and for this vertex here this is the responsible vector okay, so now next 

is 3 so for 3 now we check all the vertexes over here, now this is already, all the vertexes 

are already there in this list so now we check. 

 

Next minimum, so this is the 9 and this 9 and this is already there is 10, oh 15, so these 

are the, these are the basically we follow the responsibility vector and this will give us the 

minimum spanning tree, so this will give us the minimum spanning tree.             

        

 


