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Okay, so we will talk about universal hashing and then we will talk about BST sort by then there 

are two sort in this module.  
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So let us start with the weakness of hash function. Okay, so suppose we have design a hash 

function and you want to sell it to the Microsoft and your frames has design the hash function 

and he or she wants to sell it to Microsoft.  

 



So the Microsoft open the competition and so what Microsoft will do, Microsoft will take your 

hash function and give it to your friend and your friend hash function give it to you and as it 

starts for find out the input, find out the set where it is performing badly. So find out the set of K 

such that it is giving a, it is colliding actually for the same slot for some slot i. 

 

So you can, if you have time you can try for all possible key values and you can find out that 

where your frames has code is colliding for this input, so this is the set. So for this input it is all 

are colliding to the i
th

 slot okay. So if the hash function is given to you, you can easily come with 

such a input set. 

 

And your friend is also doing that, so how to avoid this, to avoid this we can choose the hash 

function randomly, so that nobody who can come with some input where it will be performing, 

there will be definitely collision, because this is.  

 

(Refer Slide Time: 02:28)  

 

 

 

This table size is small and this set of key size is very huge. So there has to be collision, but we 

cannot find out the set of these where it is colliding that is difficult if we choose the hash 

function randomly. So want to do that is universal hashing. 
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Suppose this is our set of all hash function from u to okay, and we call this hash function is 

universal hash function or universal hashing if among this set we have considered the portion 

which is denoted by bad portion that means in this portion the functions. So bad is defined as 

such that, if you take any key, if you take any key is y it will colloid. 

 

So if the cardinality of this bad portion is cardinality of this by m, then we call this and then if we 

choose the hash function randomly from this set, then this is along H then we call that is a 

universal hash function, because that will, that collision will be less in that case we can prove 

that, but this is clear. So this is the bad portion, bad portion means, so this is a set of all hash 

function among this bad portion means if you take any two keys for those hash function which is 

coming from this bad portion they will be colliding.  

 

So if the bad portion size is 1/m fraction of the total size, then we will have a, then we will call 

this is the universal hash function. And it can be shown that if you choose a hash function 

randomly from this head, from this universe then the expected number of collision with X with a 

key is less than n/m the load factor, this can be proved. 

 



So that means if we choose a key randomly and the expected number of collision with that key is 

less than load factor. So it is a good choice if we choose this hash function uniformly and 

random from this universal of the hash function. Now we will see an example of a universal hash 

function, how we can construct a universal hash function. 
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So construction of one construction, there may be other construction, construction of, so this is 

one example of universal hash function. So what we do, we choose that number of slot as prime 

m, let m be a prime okay and we decompose the key so key is of this from k0, k1 up to kr and 

each of this ki are coming from so we have big key and we decompose this into this is the key 

k0,k1, k2 like this so kr okay so r blocks and each of this part of the keys are ki are in the range of 

this now we choose constant vector A randomly so these we choose randomly a0, a1 …ar so this 

all the ai are also less than n and this is chosen randomly. 

 

Okay so then we defined a hash function using so this we denoted by ha(k) this a is the effecter 

and this is the key is basically Σ(aiki), i=0 to r and this mod m okay so this is a this is a 

construction or you can take mode and then take the sum a that sum so Σ this is linear product 

basically  Σ( aiki) mod m so this is, this is we have a universal of the hash function and we chose 



a randomly and we denote the hash of that k is like this Σ (aiki), mod n and it can be shown that 

this is basically this set is a universal hash function. 

 

So we if we choose a randomly then it will give you a universal hashing okay so now we will 

take about perfect hashing okay.  
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So perfect hashing is what so suppose we have given a number of piece give this a static 

arrangement and we have give an we have number of slot which is basically O(n) and we have to 

do a static arrangement for this keys so that when we start it should be dominate constant time so 

that searching will be searching in constant time guaranteed and this is static arrangement. 

 

So we are not allowing any insertion or any new keys to be any new record to be joined or nay 

keys to be deleted so this  is a static arrangement so how we can do that this is basically a two 

level hashing so this in the worst case guaranteed so we should able to search in s constant time 

the worst case guaranteed so this idea is to do the two level hashing okay so here we have the set 

of keys which is fixed we are not allowing any change over here and so what we do we first 

apply okay so this our 0,1,2 up to m-1. 



This is our number of slot so we first have apply so these are the keys k1, k2 kn so we first apply 

the our hash function on it and we choose the hash function from the universal hash function so it 

will distribute the keys in a uniform way over the slots okay now some of the slots will get 

collusion so to handle that collusion suppose this slot suppose this slot having two keys colliding 

so what we do in the second level we will use another hash function another hash table where if 

two keys are collating so here we will have 4 slot so if 2 key are collating so that means we will 

have 4 slot over here this is in a second level.  

 

So this is basically and we will have a key we i will have A, A is basically coming from the 

random choice universal hash function and this 31 is the A that 31 will decide the second level 

hash function and this is basically suppose we have some keys say 14, 27, okay. So basically 

under this hash function suppose this is the first level in h. 

 

So that means h (14) = h(27) = 2 this is in the first level so we know 2 % that two keys are 

colliding here so we have a second level hash function with 2 square 4 slots and there we have to 

choose the hash function, so that hash function we are choosing this way this is our A so this is 

14 this is say 0, 1, 2, 3 so this I basically one h [31, 27]= 2 like this, now if there is only one say 

suppose for this slots. 

 

Say suppose this is 4 this is 3, 4, 5 suppose for this slot we have only one so there is nothing in at 

this level so we have only one element and suppose for this slot we have 3 elements 3 keys 

which are colliding here at 6 so that means we should have a 9 slotting for the second level hash 

level 1, 2, 3, 4, 5, 6, 7, 8, 9,  9 slot and we need to have a, A that random for the universal 

hashing we need to have a random A which will determine the next level hash function. 

 

And suppose these are the number which are colliding here 40, 378, 22 say so all the three 

elements but 2 I have heard the second level collision so we do not know all, any collision in the 

level two so that is why you are choosing number of slot is more if there are there are 3 elements 

colliding here so we are at the second level we are choosing 3 squared 9 slot, guarantee that there 

will be no collision at the second level. 

 



So all this h value, h(40), h(37), h(22) all these are basically 6 they are all colliding in this here 

and at the original hash function then we have to choose the hash function for the second level 

that is basically h(86) and for this 41 we have one like this, so this is the second level hashing so 

now when we have to so this is this way we are ending we are stating arrangement so we are not 

allowing anybody to join the so join the at least or join this set or anybody to delete. 

 

Now how the search will be for linear time? I not linear time constant time because if we have to 

sort some key what we do? We will just go apply the h of this we will go to the first table and 

then we will check whether if it is there we will return otherwise we will apply once more the 

second level hash function and for that we know the hash function because A is given so once A 

is given then we can construct we can have h(A) the hash function. 

 

So we will compute that h(A) on this and we go to that table and we will check whether this is 

there are not so this way the time is the search time is linear not linear constant it is the constant 

time so just two times hash function we are applying, okay. So now if so what guarantee as that 

there will be no collision in the second level is that, if at the if this is i slot if ni is the number of 

element which is colliding in this level. 

 

This is the level one hashing then what we are taking we are taking ni square now so ni is the 

number of keys colliding in the first level at the i
th

 slot then we are taking ni square so here it is it 

was 3 keys colliding so we are taking 9 slot and 9 slot we are putting the 3 keys so the collision 

chances is even it can be shown mathematically that the collision is even less than half, okay. So 

now the question is, it intuitively it may looks like that we are using so much storage. 

 

Because for if ni is the number of number of keys colliding in the i
th

 slot so ni square, so what is 

the storage, what is the storage for the second level? Storage is basically ni 
2 

I = 0 to n-1, okay. 

So intuitively it looks like you but if you remember the bucket sort where we have the n keys n 

keys are distributing over some buckets and there we have this ni, ni at the number of keys in the 

i
th

 bucket and this we have seen this is basically order of n.  

 



So in the second level we are using this analysis we have done while we talk about bucket sort, 

so they are so this is the, so in the second level hashing we are also spending the linear storage so 

overall or if m is also linear m is, so overall our storage is order of n, so we not using the huge 

storage inventively it is looks like that but it is not. 

 

Okay, so this is call perfect hashing which is basically two level hashing and it is showing that 

the guaranteed worst case starts time and it is basically and the storage is also is really good. 

Okay, so next we will talk about binary start tree sort, so this is all about hashing up to this is our 

syllabus.  

 

(Refer Slide Time: 19:36)  

 

 

 

So next we will go to the, move to the next topic which is binary search tree sort, in sort it is 

BST, so what is a binary search tree it is a binary tree where binary search property means if you 

take any element X the key value, so all the key value is in the left sub tree is less than X all the 

key values in the right sub tree is get up the next, so that property is called binary search 

property. So now how we can have by sorting algorithm based on the this binary search tree. 
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So let us have this, so suppose this is BST sort yeah, BST sort so we have an array of n element 

and I meaning to sort it, so what we do initially our tree is empty and then we slowly insert the 

element into the tree we will form the BST. So, 1 to n we just do the tree insert BST insert we 

will see how this code is and then after that we will perform a in order tree walk, then it will give 

as a sorted. 

 

Perform an in order tree walk, okay so for example suppose we have this tree suppose we have 

given this 3,1,8,2,6,7,5 so suppose this is our array, this is our element we need to sort so first 

tree is empty we need to form the trees so this is the tree insert, so 3 then 1 is less than 3 we will 

put it here this is the tree insert 8 and then 2 is less than 3 which is greater than 1, 6, 6 is greater 

than this but less than 8, so 6 is here, 7,7 is greater than this, less than this, greater this and then 

5, 5 is greater than this, less than this 5. So this is the, this is after this BST insert. 

 

Now we, we need to perform this in order traversal we need to traverse the tree so for that in 

order traversal means we first visit the left then root then the right, this are recursive call left sub 

tree root at right. So if you do that, so left then again recursively so it is basically give as 1, 2, 3 

and again for this part 5, 6, 7, 8 sorted. Okay, so this is the, this is what is call BST sort. Now we 



need to analysis this code hoe much time we have, what is the run time for this code, so what is 

the run time for in order traversal this, this will take linear time order of in because this is just we 

are visiting each of this node. 

 

Now the question is what is the run time for this, so this will be, this will be time for this sorting 

because this is the measure time, so well this will depend on the, on the tree on the numbers. 

Now suppose our tree is like this, suppose our input is, input is already sorted so that means               

our tree will be like this and then what is the runtime what is the time to insert this, this is 

basically depth of the note and this is basically 1+ 2+ up to end so this is ending to order of n2 is 

the washed case now when is the based case if the tree is like this so this the washed case then 

the runtime is already n2 now if the tree is like this very good tree. 

 

I will have to draw this tree anyway so this is what is called balance tree so now if the tree is like 

this then what is the runtime then what is the this tree insert tree insert is basically hearing to so 

order of l logn okay because there are n/2 notes over here so for this notes each time is logn so 

for that it is order be so this the based this is the lucky case so can you remember some sorting 

algorithm we know which will give us this runtime washed cases is L2 this is yeah that is the 

quick sort. 

 

So you want to see how this quick sort is related with the BST sort so for that let us just take one 

example suppose we have 3 1 8 2 suppose we want to sort this using quick sort and we choose 

these are the three word element so if we do that if we apply the partition a little partition into 

two part 1 2 over here and then remaining over here 8 6 7 5 and here there assuming that we are 

ordering at not changing so this is some sort of table. 

 

Partition we can have so ordering and not changing the same ordering  there achieving here so all 

the elements are get at the links so again we choose these as a p word so these will be 2 and 

again we choose these as a p word so it is partition like this so this is all the elements 6 7 5 and 

again we choose these as a p word so 5 7 like this so this is just the week sort partition this is the 

quick short and then if we just draw these if you just draw this okay so this is if we remember the 

form of that we already done the. 



 

BST sort for this example and you have the same tree so that mean same number of comparison 

we need for week sort and the BST sort I mean to get the BST tree in maybe some different order 

because same number of comparison 3 everybody as to compare with three so there also when 

insert when we make the tree everybody has to come so same number of comparison is required 

for both the cases that means. 

 

That mean run time for week sort is same as runtime for BST sort this is the good observation so 

these observation we will use when we talk about randomize part of BST sort and randomize 

version randomize BST sort so what we do we have given the array we just random the permit 

these numbers we apply some random permutation on and random permutation on A array and 

then we perform the BST sort. 

 

Okay we have some numbers we are randomly permuting these number and then in perform the 

BST sort and in that case so this is similar to the randomize version of quick sort so the runtime 

for this is runtime for randomize BST sort is same as runtime for randomize quick sort so the 

expect runtime for randomize for BST sort is same as exceptive runtime for this so expected 

runtime we know l logn so from here we can so that expected height this is the things we want 

achieve expected. 

 

Height of this tree height of randomize BST tree BST is basically logn so expected height is logn 

so that mean so if we have some numbers and if we just do the random permutation on this 

number then it will give us the balance tree expected do it will be logn height tree so very nice 

tree balance tree but this is expected there is no guarantee but we can say the expected runtime 

expected height of this tree is logn thank you.            


