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Social Network Principles – I 

 

In the last few lectures we have been talking about the Basic Statically Metrics for 

analyzing complex large, complex networks. And we have got introduced to different 

centrality measures, page rank etcetera. 

In this set of lectures from now on wards we will mostly talk about Social Network 

Principles, and one of the first social network principles that we will discuss is called 

Assortativity or Homophily. 

(Refer Slide Time: 00:53) 

 

The idea is somewhat like this, that given a social network rich people always tend to 

make friendship with other rich people. So this is the idea of Homophily or Assortativity. 

Also in other words you can say that the like goes with the like, so rich goes with the rich 

and possibly the poor goes with the poor. 
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So if you look in to the slides the first example that we have here, is a friendship network 

from the one of the US high schools and what you see here there are three types of nodes 

in this network. The black ones correspond to black people in the school, the white ones 

corresponds to white people in the school and the grey ones are the others which could 

not be people who cannot be classified into either of this groups. And an edge in this 

network indicates a friendship relationship. 

So, what you observe here immediately is that there is this existence of homophily. That 

there are more blacks are more friends with other blacks, where as whites are more 

friends with other whites, and there are hardly any connections between blacks and 

white. This is the idea of homophily that we will build up on from now. So this is one of 

the very interesting examples. 
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Another example was this experiment that was conducted in the San Francisco where 

there were 1958 couples who are interviewed. Now, these couples are like they classify 

themselves into four basic classes; the blacks, the whites, the hispanic or the people from 

Spanish Portuguese origin and others, who could not be classified into any of these three. 

And people from all this origins were interviewed and the question they were asked was 

about their sexual partnership. So, given a chance what type of sexual partner they would 

prefer. And this particular matrix in the slide shows you like what is their preferences, in 

general what is the preferences. 

So, one of the immediate observations from this particular slide or specifically this 

particular table is that the cells that are on the diagonal are the heaviest. Which again 

indicates that people who are of the same type are interested to have partner from their 

same own class like; blacks want to have more partners from the black class itself, 

hispanics want to have partners from mostly from the hispanic class itself, white tend to 

choose partners mostly from the white class and the others from the other class. You see 

that this is one very typical example in majority of social networks mostly which are 

built on this idea of friendship this particular phenomena is very, very, very prevalent. 

So, the idea is that again to iterate is that if there are people from the same class then 

partnerships or friendships between them is more probable than people from two 

different classes. Also this idea could be thought of as like people tend to go with other 



like people, so rich people tend to go with rich people like, so you can interpret it in 

various different forms. But the basic idea is this. 

So, some more examples; if you now look into this slide you see two typical examples. 

The left hand side network as it shows is much more assortativity than the right hand 

side network, the right hand side network on the other side is less hemophilic. And in 

general this type of networks are termed as Disassortativity Networks, that is rich do not 

go with rich; rich usually tend to go with poor. As we have seen long back in one of our 

introductory lectures in biological networks you see such disassortativity networks. Even 

in technological networks like routed networks you see this sort of disassortativity 

networks where like, many small computers, many mini computers connect to a large 

router. So it is mostly a disassortativity network. 

Where, social networks or friendship networks are mostly assortativity in nature. That is 

popular people tend to go with other popular people, tend to make friendship with other 

popular people rich people tend to make friendship with other rich people, that is the 

basic idea. Now given this observation from various social networks what immediate 

question is like, how can we have a quantitative measure of these particular phenomena? 
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Now we will see how to Quantify Assortativity. The quantification goes like this, let us 

say that consider a node of degree k. Now the assortativity can be expressed by a factor 

called knn that is nearest neighbor degree. And this is defined as the following; k prime k 



prime p k prime given k, where p k prime given k is nothing but the conditional 

probability that a node of degree k ends up in connecting with another node of degree k 

prime. So this is the conditional probability that a node with degree k will connect at its 

other end with the node of degree k prime. 

So, this conditional probability multiplied by the node degree at the other end the k 

prime some of this over all nodes or all such k primes defines the nearest neighbor 

degree. The idea is very, very simple. So what you do is, let us say that we have a node x 

now we look at the degree of the node x, we also look at the degree of each of neighbors 

of the x. Let us draw it like this. 
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Suppose you have a node x here, now say x as k neighbors N 1, N 2, N 3 up on till such 

k neighbors. Then what we do is we see what is the degree of each of the individual 

neighbors; we check the degree of each of the individual neighbors. We find an average 

of the degree of the neighbors that is the nearest degree neighbors. We find an average of 

the degree of all the neighbors, so you have the degree of the node x and the average 

degree of the neighbors. You have these two things, on the x axis you have the degree of 

the node x and on the y axis you have the average degree of the neighbors of x. 

Now, if this plot is a scatter diagram which mostly concentrates on the y equals x line 

then you have a high probability that nodes with similar degree or nodes of similar 

degree at friends in a social network. So what you see is that, my degree which is k is 



highly related with the average degree of my neighbors, so that is the idea. If my degree 

is highly correlated with the degree of my neighbors then it is an assortativity network.  

And such co-relation is reflected by the scatter diagram which is concentrated close to 

the y equals x line on this particular plot. So this is how you basically identify by plotting 

the degree and the degree of a node and the average degree of the neighbors of that node 

by plotting them on the x and the y axis and looking at how well they concentrate around 

the y equals x axis you identify whether a particular graph is assortativity or not. 

For instance, if you have a similar plot where you have the k and the average degree of 

the neighbors of x, k is basically the degree of x. And if you have a scatter plot which is 

just opposite like this then you have a high chance to believe that this particular network 

is disassortativity in nature. So, one side when it is highly correlated it is assortativity in 

nature, on the other side if it is negatively correlated then the network is thought to be 

disassortatvity.  

Just to make things more clear look at this diagram in each of this plot what we have 

plotted on the x axis is the degree values of all the nodes. So, every node x in the 

network we have plotted the degree of every node x in the network and on the y axis we 

have plotted the average degree of the neighbors of each such node x in the network that 

generates this plot. 

Now looking at this plot and having this fit having, this co relation analysis you can 

immediately say whether this is an assortativity network or disassortativity network. 
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Now in order to further nicely quantify this idea there was this concept of Mixing 

introduced. Now in order to understand what exactly we mean by mixing in a social 

network we will look into the same example that I should you last time. The example of 

the partnership choices of these 4 categories of inhabitants of San Francisco: Black, 

Hispanic, White and the Others. Now, from this particular table that we see here we will 

translate this table into a more normalized version. 
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So what we will do in this normalized version, if you look at this slides each cell of this 

table is normalized by the sum of all the entries across all this cells of the table. 

Basically, you normalize each cell by sum of all the entries in all the cells of this table. 

That means, now the sum of all the individual cells will adapt to 1. If you look at the 

slides that is way we write here sum of i j e i j is equal to 1. Now again even by looking 

at this table you can very nicely observe that the diagonalies heavy. 

Now, if we have a matrix where the diagonal contains all the values there is no other 

values in no other cells, then that would mean that the network is perfectly assortative, 

that is there is no other value in any other cell except the diagonal. So, blacks only go 

with black, hispanics only go with Hispanics, others only goes with others, and white 

only goes with white. Then in such case only the diagonal will have all the concentration 

of the values while the other cells will be empty or 0. 

In order to quantify this particular notion we will define the assortative mixing 

coefficient r. On one extreme you have e i i, which is the diagonal element this is the 

sum of all the diagonal elements so you are counting the total density of the diagonal 

elements by sum of e i i. Now you are subtracting from there the chance that a black 

chooses a hispanic or a black chooses some other group with some random chance 

independently, so that is quantified by this sum of a i b i. As you see here, as we have 

shown in the table a i is the sum of the elements on the rows, where as b i or b j is the 

some of the elements on the columns. 

Basically, this is independently if there is a chance those two nodes from two different 

groups' pair up for sexual partnership so that you discount from the total volume. 

Basically, you see what is the actual partnership that, you are getting from the data minus 

the part that you could have observed just by random chance. This is similar to the idea 

of defining correlation coefficient in statistics. Basic idea is again if I iterate that looking 

at the data you have the probability, you can estimate the probability of pair of people 

grouping for sexual partnership. This is say black going with black, white going with 

white, these value is counted or this fraction is counted in some of e i i. And from there 

we remove the part which could be just absorbed by random chance which is sum of a i b 

i. 



Now, this is normalized by, as I say perfect assortativity would be when some of e i i 

will be 1 everything else is 0 that is perfect assortativity. So that extreme is 1, that is the 

extreme value of e i i minus sum of a i b i. So that is the extreme value of e i i minus sum 

of a i b i. This fraction is what we call the mixing coefficient.  

Basically, what you see is you find out what is the probability or what is the chance that 

blacks goes with blacks, white go with whites, and you sum up all this counts minus 

what is the probability that you see by chance that two people pair up that is what you 

discount from this value and then you normalize this whole metric with 1 minus sum of a 

i b i. Where 1 is the extreme value of e i i that is the maximum that you can achieve. So 

if it is a perfectly assortative network then what will happen is this mixing coefficient 

again will be 1. 
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Because, in such case you have r is equal to sum of e i i minus sum of a i b i by 1 minus 

a i b i. Now for perfectly assortative networks sum of e i i will be equal to 1 as we said, 

that implies r will be equal to 1 minus sum of a i b i by i minus sum of a i b i which is 

equal to 1. So, for perfectly assortative graphs we will have a mixing coefficient equal to 

1. However, if it is a disassortative network then e i i will be 0 and we will have a 

negative mixing coefficient value. 



(Refer Slide Time: 19:58) 

 

Then after this the after we have got a little bit of idea about homophily or assortativity 

we will now look into another very interesting concept called Signed Graphs. 
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Basically, this is a formal structure of graphs through which you can express, for 

instance in a social network or in a friendship network you can express both friendship as 

well as enmity. A network by which one can express both - friendship and enmity, some 

of the examples are one that we have given here in the slides, so look at this graphs. So, a 

plus sign on an age of this network would indicate friendship, whereas a minus sign 



would indicate enmity. If two nodes are connected by an edge which as a plus sign then 

it is a friendship relationship between these two nodes. 

However, if two nodes are connected by a negative edge, then this relationship is enmity 

relationship. And I have this interesting question given our online class it would be a 

nice exercise to measure how it will look in terms of this sign graph. Do you really have 

enemies here? 
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Once we have this concept of sign graphs the first thing that people where interested in 

studying was this idea of balancing. Basically, these idea barrows from the traditional 

balancing theory; if you look at these graphs are given here. For instance the first graph, 

the graph marked as a. You see there are three nodes u v and w, it is a triangle basically. 

Now all the edges are marked as plus. So everybody is a friend of everybody else in this 

network. This is very stable configuration. 

Now let us take the second example. The second example is a bit tricky. So what you 

have here that, there are two nodes who are friend among each other and both of them 

actually share an enmity relationship with the third node. This is again a possible 

configuration because two friends might have a common enemy in general that is also a 

stable configuration. The third one is where you have at least two edges which are 

positive. Whereas, the third edge between these two is negative. This is a rare case. And 



the forth case is impossible. That there are three enemies in a triangle is a completely 

impossible case. 
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Now given this examples of triangles we can also imagine cases of 4 cycles. Now like 

how should be the sign graphs taking 4 nodes together look like. Some examples are 

here. So, some of the stable configuration are shown here. These are the 2 friends each of 

each are enemies or these are the two friends and then there are 2 enemies on the other 

side. So these are some of the stable configurations that you observe here. 

In general the idea is that you should have even number of negative signs in the graphs, 

unless you have an even number of negative signs in the graph the configuration is not 

stable. Only if you have an even number of negative signs on edges in a graph then only 

your configuration is a stable configuration. 

For instance, in this particular example you see c and d are having uneven number of 

negative edges, and that is why these are unstable configurations. Whereas, in this 

particular case the 4 cycles you have only even number of negative edges that is why 

both of them are stable configurations. 
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So, the next idea that we will talk about is Structural Holes. This is also again a very 

interesting idea and we have already looked into some sort of a quantification of this idea 

in one of our previous lectures when we discussed about betweenness centrality. 

Basically, structural holes are nothing but nodes or social actors in a network who are 

like brokers, like they actually transmit relevant information from one part of the 

network to the other part; they actually behave like information brokers. 

For instance, let us take these examples here. So, structural holes, as it reads out actually 

will separate non-redundant sources of information, sources that are additive and not 

over lapping. 
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If you have two parts of the network say, one here and the other here. Basically, this 

green node here is denoted as a structural hole, because we are imagining that the 

information that is there within this particular group of members in the social network is 

very different from the information that is stored here in this group of networks, so that is 

why we call this particular node a Structural Hole. We have a word of caution here; there 

are two things that one needs to be careful about.  

A cohesive group cannot have a structural hole, for instance if you have a network like 

this, so this very cohesive network. And since this is a very cohesive network everybody 

has similar piece of information that is why nobody in this network actually qualifies as a 

structural hole. Similarly, if there is another similar concept of equivalence. For instance, 

suppose you have a node here and on two sides of it you have nodes that have equivalent 

information, and then also this is not an example of a structural hole.  

For instance say, this node or this node or this node or this node none of them are 

structural holes. Here also this particular black node is not a structural hole, because it 

does not enjoy any extra information more than, either of this green node. However, if 

you have a case where you have a node same black node here, but then the nodes on the 

left hand side have a very different set of information from the nodes on the right hand 

side. Then this particular node actually qualifies as a structural hole. 

So, we will stop here. 


