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Welcome back to this session on Network Analysis. We will continue with the ideas of 

network analysis that we have been talking for last few days. Today, I will introduce two 

important matrixes that are very useful in the context of directed networks, and 

especially in the context of citation networks. The first one among this is called Co-

citation Index. 
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The idea is very simple that when you look at a author author citation network, the type 

of network that we have discussing already in the context of degree distribution studies. 

If you look at an author author citation network what you observe is that, there are at 

times where two authors who are not connective by a citation relation among themselves 

have some relationship in an indirect manner and that is what we want to study here and 

that is what we quantify through this metric. 

For instance consider this small hypothetical network here. From this network you 

immediately see that author 1 is cited by author 3. And similarly author 2 is cited by 

author 3, so mark this word cited by. Basically, there is this author three who actually co 



cites both author 1 and author 2. You even get a stronger evidence of such co-citation 

behavior when you look at author 4. We find that author 1 is also cited by author 4 and 

author 2 is also cited by author 4.  

This gives us additional evidence that although author 1 and author 2 are not connected 

by any citation relation they perhaps have a relationship between themselves. And that 

relationship could be many things, could be in the form of that both author 1 and author 

2 works in the same field say for instance you can imagine that probably both author 1 

and author 2 works in AI or machine learning. Also it might be the case that author 1 and 

author 2 work on similar topic or method. 

For example, say SVM in the area of machine learning. So, such hidden relationships 

between pairs of authors or a group of authors might exist in an author author citation 

network. And unless you have design appropriate construction it is not possible to tear 

through these relationships. And such constructions are not very difficult to formulate. 

For instance, let us consider that this author author citation be named as A. So let the 

matrix for the author author citation network this be denoted by the matrix A. 

Then the co-citation network is nothing but simply the product of the two matrices A 

transpose A. If you construct the A transpose A of this graph then you get a new graph 

which would look like there will be only two nodes 1 and 2, and there will be an edge 

between them indicating a co-citation relationship. 

Now imagine that there are many such intermediate nodes like, node 3 and node 4 in this 

example, then the evidence that the nodes 1 and 2 shares some relationships becomes 

stronger and stronger. Then more the number of intermediate nodes like node 3 and node 

4 the stronger is your evidence that there is some form of relationship that exists between 

node 1 and node 2. 
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Now, likewise there can be a symmetric or mirror image concept which is called the 

Bibliographic Coupling. So this is as I say is just the mirror image of co-citation index. 

To understand the concept let us again draw the same hypothetical citation network 

example. It is only in the difference of how you (Refer Time: 07:23) the citation 

relationship. In this case what you see that, author 3 cites author 1. The earlier 

relationship that we are talking about was cited by and here we are more concentrating 

on the relationship cits. Similarly, author 4 cites author 1. 

Again you have second level evidence a stronger evident make making your 

observations stronger, where you see that author 3 cites author 1 sorry author 2. 

Similarly, author 4 cites author 2. The earlier case was considering the cited by 

relationship, the current case is by considering cites relationships. So, author 3 cites 

author 1 and author 4 also cites author 1, similarly author 3 cites author 2 and author 4 

also cites author 2. This indicates that there is a possibility that authors 3 and 4 shares 

some relationship. 

So, again extending the same idea as we talked about in the cite co-citation index 

context. Basically here you are no longer considering author 1 and 2, but authors 3 and 4 

who have the similar citation behavior who have similar patterns in their reference list. 

The similar referencing behavior, you can also call it as a referencing behavior. The way 

author 3 refers to papers, author 4 also refers to papers in a similar way. Again the idea is 



that probably these two authors work on a similar field or on a similar topic that is why 

very often they have to cite other similar people. So, there could be a relationship in that 

way existing between authors 3 and 4. This kind of a relationship is called the 

Bibliographic Coupling. 

Again if we consider that the corresponding matrix for this network is a then for this 

citation author, citation network is A then the bibliographic coupling network can be 

obtained just by the product of the two matrices but now written like A dot A transpose. 

Whereas, the co-citation index matrix could be obtained by A transpose dot A, here the 

bibliographic coupling matrix can be obtained by A dot A transpose. 

Actually these two networks are used in conjunction with the original author citation 

network matrix to do various sorts of recommendation task, citation recommendation, 

authorship recommendation, and various other recommendation tasks where people 

heavily use higher techniques but then at the back end some of the matrix that are used 

some of the quantification that go on are basically drawn from these three networks A A 

A transpose and A transpose A. 
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So, continuing with other matrix we will now introduce another very interesting concept 

for directed networks and this is called Reciprocity. The idea is very simple, suppose 

there is a node A there is another node B in the network there is a directed edge from A 

to B. Now as the name suggest reciprocal means if there is a link from A to B there is a 



reciprocal link from B to A. In directed networks there might be a link back from B to A; 

this is a very different link from the link from A to B in the context of directed networks. 

So if there is a link from A to B, then if there exists another link from B to A then we say 

that this is a reciprocation of the original link A to B. The reciprocation of the original 

link A to B is the link B to A. And the associated quantification is called Reciprocity. So 

the idea is very simple. So quantification is quantification of reciprocity which you 

define by the metric r.  

So if you have m edges in the network, the total number of m directed edges in the 

network among this how many edges are actually reciprocated, that is the idea. If there 

are say n nodes in the network and there are some of the edges which are reciprocated 

and then there are some of the edges which are not reciprocated. So, you express the total 

reciprocation as a ratio of the total number of edges in the network. So that is how 

reciprocity is defined. 

Basically, it is in the directed network A i j A j i, so there is one link from i j and there is 

another link from j i. If A i j is 1 and also A j i is 1 and this product will become 1. 

Otherwise, in all other cases this product will be 0. If there is 1 and 0, 0 or 1 in both the 

cases this product will be 0, only in the case where both of them are 1 that this product 

will be 1 and this is expressed as a fraction of the total number of edges in the network. 

So, m is the total number of edges in the network. So this is the how you define the 

reciprocity of a graph. 

So, the next concept that we will talk about is called the Rich-club co-efficient. 
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This is another very interesting phenomenon. For the time being we will only consider 

undirected graphs, unweighted graphs for estimating the rich-club co-efficient. The idea 

is very simple that given a social network or say given a collaboration network of 

scientist do you find a group of people or group of scientist or a group of nodes in the 

social network who are in some sense rich and actually form a dense connectivity, 

actually establish a dense connectivity among themselves. So they have to be rich and 

they have to be densely connected. These are the two constraints that this set of nodes 

need to satisfy. 

Basically, how to quantify richness? So richness in the context of rich club co-efficient 

can be quantified in different ways but the most basic one is to assume the degree of the 

node. If the degree of the node is above a threshold say k then you consider this node as 

a rich node. So richness is in this case analogous to the degree say k of the node being 

considered. 

Suppose there is a richness threshold, say richness threshold is said to some k prime then 

you consider all nodes in the network where the degree of the node k is greater than or 

equal to the richness threshold k dash. So you consider all the set of nodes in this set 

where the degree of the node is greater than the richness threshold k prime or k dash. 
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Suppose the number of such nodes with k greater than equal to k dash is sum n nodes. 

Now you consider this set of n nodes and you see what is the density calculate the edge 

density or the density of the edges in between the n nodes. So, you calculate the density 

of the edges in between this n nodes which are actually the high degree nodes or nodes 

crossing the richness threshold bar of k prime. 

So that, how will you calculate the density? It is very simple. The density is nothing but 

the number of actual edges between the n nodes divided by the maximum number of 

edges which is possible between these n nodes. The maximum number of edges possible 

is n C 2. Whereas, you express the actual number of edges between these pairs of n 

nodes as the ratio of the maximum number of edges that is possible between these n 

nodes. And this is actually the rich-club co-efficient of the network being considered. 

As soon as I talk about this you can very well imagine that the rich-club co-efficient is 

nothing but trying to express whether the nodes that are rich in terms of degree have a 

very high number of connections among themselves. For instance, take for the example 

the actor actor network from the movie actor example that I have cited earlier. So the 

actor actor network here, if you find a rich-club this would mean that the most influential 

actors packed together from a (Refer Time: 20:42) with each other from a group with 

each other and sign movies together so that the next movie release is really a box office 

hit. 



Similarly, there are quite often we have found that in the scientific domain there are a 

bunch of scientists who are really very highly cited and very highly popular scientist they 

come together and do something very impactful something very seminal. So, whenever 

such a seminal thing happens there are a bunch of highly well known, well establishes 

scientists they come together form a rich-club and by the virtue of forming this rich club 

publish something very seminal. 

Like for example, in the current last one or two years context one of the examples would 

be this hadron collider and the idea of got particles which you have probably come 

across in various new articles. 
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Now, the next concept that we will talk about is the Entropy of the Degree Distribution. 

So this is another interesting idea, very simply put. If you recollect the degree 

distribution is encoded in the variable p k, which is nothing but the probability that a 

node chosen uniformly at random has a degree k. So, this was the very simple idea of 

degree distribution. Since, this is a probability distribution one can always estimate the 

entropy of this distribution. So, simply put the entropy H is nothing but p k log p k; and 

as you can well imagine that entropy actually encodes the randomness, the extent of 

randomness in a distribution.  

f this quantity is high then the distribution is relatively random and the network structure 

is also relatively more uniform, whereas if it is queued, if it is lower than probably it is 



not the case. Some interesting exercises could be like what should be the entropy of p k 

for, let us call this H p k, the entropy of p k that is H p k for a regular graph. A regular 

graph is a graph in which all nodes have the same degree. So, a (Refer Time: 24:42) is 

also a regular graph where each node has a degree n minus 1, where n is the total number 

of nodes in the networks. 

Similarly, if a network each node has a degree k then that network is called a k regular 

graph. Basically, in such a system, in such a network what do you have p k is 1 for that 

particular value of k for which you are constructing the regular graph and p k is 0 for all 

other values of k. In such a case what should be the entropy, it is very simple to find. So, 

you can easily compute the entropy. For that particular value of k there will be it is 1, p k 

is 1 1 log 1 plus the rest is there is nothing. 

Such a network does not encode any diversity that is what is been actually talked about. 

So in such a network you do not observe any diversity, all nodes have similar degree. So 

that is why the entropy goes to 0. Whereas, if there is a network where this degree (Refer 

Time: 25:55) then the entropy is more close to non-zero values. So this again gives you 

an idea of the topological structure of the underline social network. 

So, one is the degree distribution itself and on top of it you can also measure the entropy 

of this distribution to understand to get an idea better feel. Suppose, if the entropy of 

such a network is close to 0, then you immediately get to know that this a more sort of a 

regular structure; whereas, if this entropy is not close to 0 then it is a more non-trivial 

structure that is there in the social network. 
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There is this last concept that we will get introduce to which is called the Matching 

Index. Basically, what this matching index tries to say is tries to quantify is that how 

similar are two nodes in terms of their connectivity patterns. The matching index mu i j 

is actually expressed using the following formula. As soon as I write the formula it 

becomes very clear to you. So what we are trying to see, suppose there are two nodes i 

and j in the network and there is some other node k sitting out here, and we assume that 

there is already an edge between i and j. 

Basically, if there is a lot of connections like k, see there is some k prime, see there is 

some k double prime, all of these actually connect i and j. So these k prime k double 

prime k are the number of nodes that is being measured by the numerator of this formula 

A i k k j. So, basically you are trying to count how many such triangular shapes or 

triangular completion exits between i and j and that you express as a fraction of the some 

of the degrees of i and j. 

Basically, this gives you an idea of the balance. If there are two nodes i and j and there is 

an edge between them and if all other connections all other intermediate nodes between i 

and j there is a connection from actually i to k and k to j, if the structure is like that there 

is no other node than this set of k values then the matching index is maximum. Now if 

there are many other nodes.  



Basically it might be heavy on i, there degree i might have a very high degree similarly j 

might have a very high degree, but the overlapping set of nodes is not so high then the 

matching index is low. So, basically you see how well is the match between the 

neighborhood of i and the neighborhood of j, how balanced is this match. That is what 

you try to quantify using the matching index. 

So we stop here. 


