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Welcome back to this session on Network Analysis. We will continue with some of the 

ideas that we have discussed in the last lecture. To start off, I would just briefly recap the 

concept of eigenvector centrality that we developed on the last lecture. 

(Refer Slide Time: 00:39) 

 

So if you look at the slides, I have written exactly whatever we done last day on the 

slides. 
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The basic thing that we saw was that, if x t is the popularity value at some time t then we 

can express x t in terms of A t into x 0 this is what we have already seen. This we call 

equation 1, say for simplicity. Now what we have further said is that let us express x 0 as 

a linear combination of some eigenvectors of the matrix A, the adjacency matrix A. Then 

one can write x 0 as nothing but the sum of some linear combination of some of the 

vectors of the adjacency matrix, where v i is an arbitrary eigenvector of A, this is what 

we wrote last day already. Further from the eigenvector equation we all know that A v 

should be equal to lambda v where lambda is the eigen value corresponding to the 

eigenvector v. 

So, now if we multiply both sides of this equation by A once again, we have A into A into 

v is equal to A into lambda into v, that should be equal to lambda into A into v once again 

that is nothing but lambda into lambda into v that is lambda square v. So, continuing like 

this 40 times this would imply A t v should be equal to lambda t v. So this is what is we 

call equation 3, and let us say that we call this equation 2. The equation x 0 is equal to 

sum of c i v i has equation 2. 



(Refer Slide Time: 03:51) 

 

So from 1, 2 and 3 we can write the following expression; x t should be nothing but 

equal to lambda i t c i v i. Now we will do a small trick out here, what we will do we will 

divide both sides by lambda 1 t, where lambda 1 is the principal eigen value and the 

corresponding principal vector is say v 1. Then you can write this as nothing but lambda 

1 power t c i v i. Now if we have gone sufficiently many numbers of steps. 

So, we are talking in terms of thermo dynamical limit that is when t is very, very large. 

The point after which there is no significant change in the popularity, so at that point we 

will have limit on t it really goes to large numbers we can put on both sides this limit. So 

this, what does this tell you now for i is equal to 1 this value the value here changes to 1, 

so you have c 1 v 1 plus numbers which have a fractional pre factor power to some 

infinite power. All those fractional pre factors that are power to some infinite power go to 

0 only c 1 v 1 remains. So, this tells you that the popularity converges to the principal 

eigenvector of the adjacency matrix A. 

So, that like kind of completes the idea of eigenvector centrality. Basically, in a nutshell 

what you need to remember is that if you have to compute the eigenvector centrality of a 

network. 
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Then you for that network you have the adjacency matrix say A and you compute the 

principal eigenvector of A, say that is v 1 which corresponds to the eigenvector centrality 

of the nodes. So, all this time we were discussing mostly in the context of undirected 

networks, where edges are not directed. This entire exercise that we did in for 

computation of eigenvectors is for an undirected graph. The adjacency matrix A is 

assumed to be symmetric. 

So, all this explanation that i have given you so far is under the assumption that the 

adjacency matrix that we are considering is symmetric, that the graph is an undirected 

graph. 
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Now, the immediate next question if you look in to this slide is how to convert this 

definition in the context of a directed network. 
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As soon as you try to do that there are certain problems that crop up and one of the 

important problems is what I have shown in the figure in the small network that I have 

described here. So what happens is think of the node A, now this node does not have any 

in degree it’s in degree is 0, so that means the centrality value that this node will have is 

0. Then the node B, consider the node B this has only one in degree from A.  



This node will also have a centrality value of 0, because A has a centrality value of 0 

which is actually borrowed by B and that centrality is also 0, and in this way it continues 

and propagates over the entire network. So, the entire acyclic parts of the network 

actually for all the nodes that are part of that acycle of that network have a 0 centrality. 

This is a very big problem, when you try to translate the concept of eigenvector 

centralities for directed networks. 

So, I repeat the problem is very simple. You have this node A here which do not have any 

in degree, so that means since it does not have any in degree its centrality is going to be 

0. So if its centrality is going to be 0 then the centrality of B which is solely completely 

dependent on A is also going to be 0. And in this way anybody whose centrality is just 

dependent on B is its centrality the node the centrality of that node is also going to be 0, 

and this will continue until and unless there is some cycle in the network. This is a 

problem when you try to convert the definition of eigenvector centrality for directed 

networks. So, what could be a solution? 
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So, what we try to do is we try to sprinkle some initial popularity to each individual 

node. Since this is a problem, now if we sprinkle a very small equal centrality to all the 

nodes. We do not disseminate any node, so we try to sprinkle a very, very small tiny 

centrality value to all the nodes equivalently. Now we start from that configuration. Then 

in that configuration you can immediately see that A’s centrality will no longer be equal 



to 0. Therefore, if you do such a thing then you have to readjust the formula that we 

introduced last. 

So now again we can write x t. Or say for a particular node x i should be, now we are 

rebalancing things. So here in this formula what we have brought in it looks very similar 

to the previous formula that we have introduced for the eigenvector centralities, but then 

we have brought in two important changes if you look carefully; one is this parameter 

beta here and the other is this parameter alpha here. So, both beta and alpha are constants 

this is the first premise. The second thing is beta is the small initial value of centrality 

that we give to each node. So, beta is the initial small centrality that we actually give to 

each node equivalently, and alpha actually is the readjustment constant so that the entire 

formula remains balanced. 

Since you are introducing this beta component into the formula we have to accordingly 

rescale the other part of the popularity, so one popularity is inherent that is given to me 

that is sprinkled on all of us and there is another popularity that is coming from the 

neighborhood. So, these two has to be rebalanced again in order to keep the formula 

equivalent to the previous case. So, now given this we can immediately write the 

notations in terms of x t’s as functions or in terms of vectors and matrices. 
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So now, let us say X is the vector popularity vector so this is like x 1 is the popularity for 

node 1, x 2 is the popularity for node 2 and so on and so forth. This is my vector of 



popularities. From here you can given the formula that we have written just now we can 

immediately write the following expression as I have already written also on this slides; 

A alpha A x plus the beta into 1, where 1 the darkened 1 that I am writing, the bold 1 is 

the vector of all one’s. Therefore, express X in terms of alpha A again the vector A x plus 

the beta factor which actually is nothing but the initial popularity that you have sprinkle 

to on each and every individual node. 

Now this if we try to readjust and write express x as the subject of the formula, so 

expressing x as the subject of the formula we can write x is nothing but beta into 1 minus 

alpha A inverse, and there is this vector of all one’s. Let us denote the vectors by the 

vector sign it would be easier for us to note. Now see from that original formula we have 

come up with an expression to find out the exact value of popularity given the constants 

alpha and beta and the initial popularity beta, the other readjustment constant alpha, even 

these two and the adjacency matrix of the network you can immediately compute the 

popularity value x. 

But then just a point of note here that computing inverse, this is the identity matrix 

inverse of matrices is difficult. Thus it is better to compute using the iterative equation, 

which in this case is again very simple you can write x t is equal to nothing but alpha A x 

t minus 1 plus beta. And then there will be a point after which x t will change no longer 

and you will have an expression for the final value of x t. All of these ideas are borrowed 

from the first definition of eigenvectors then we are gradually incrementing that same 

idea, we are building up on that same idea and developing better and better matrix for 

application in different network settings. For instance, this particular development is in 

the settings of are directed network. And this particular centrality is termed as by the 

name of the inventor Katz centrality. 

So now, since we had talking about eigenvector centralities, Katz centrality, directed 

graphs, there is one thing that actually is indispensible and needs to be discussed in this 

context and that is like the worldwide web graph. And in the context of the World Wide 

Web graph how are the web pages ranked. So, all these initial settings that we have been 

developing so far in the last lecture and today’s lecture is in the direction of building the 

idea of how to rank the web pages in a World Wide Web graph. 
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Basically, in a World Wide Web graph you will have nodes which are pages, say page P 

1, page P 2, page P 3, and so on. So in this way you have a World Wide Web graph, and 

if there is a hyperlink from page P 1 you draw a directed edge like this. There could be 

another hyper link say from page P 2 to P 1 you draw a directed edge like this. This is a 

typical representation of a World Wide Web graph.  

Now, the question is like all of us have been using Google search engine almost every 

day and multiple times a day and probably many a times a question have come across is 

like when you search using a query term there Google returns you back a bunch of web 

pages. Now, these web pages actually are ranked in some way and this ranking actually 

is done in terms of the importance of a particular page. And this importance is measured 

using some formula which is very similar to what we have just now discussed, which is 

very similar to Katz centrality. And this formula was developed in the frame work of the 

very famous algorithm called the Page Rank. 

Page rank basically tries to determine the rank of a web page being displayed in return to 

a query on the search engine. This algorithm actually tries to assign importance to each 

individual page so that whenever there is a search query the pages that are return could 

be actually sorted in terms of their importance. The basic idea is again same as we have 

discussed for the case of the eigenvector centrality. 
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If you look at the slide you I give a very simple example of a small snap shot of the 

world wide web. So, what you see here are a few nodes marked like A, B, C, D, etcetera 

and the size of the node is actually expresses the extent of popularity of that particular 

node. You see that the node C has only 1 in degree, but then you see that the popularity 

of node C is quite high, this is because node C is actually pointed by node B who himself 

is very, very popular. This is the basic idea of the eigenvector centrality that we have 

already discussed. Since node C is being pointed already highly popular node B that is 

why node C’s popularity automatically increases. 

Whereas, take for the example the case of node E. The node e here has a lot of in degree, 

but each of these nodes that point node E are not themselves very popular. So that is why 

node E is not actually very popular. Even if it has a very high in degree it is not actually 

very, very popular. Whereas, in contrast nodes C which has just 1 in degree is much more 

popular by virtue of having one very popular person pointing to node C. This is the idea 

that we have already discussed, I have just illustrated the same using this example on the 

slide. 

So then, the question is how was page rank defined. It is again very, very simple. Even 

before we go to that definition the quantity definition one question that can immediately 

come to our mind is how to make our own web page. Suppose, you have (Refer Time: 

24:11) a webpage what could be a criteria to actually make your webpage important or 



popular. This is a very important question and various companies have been working in 

order to help the promotion of certain web pages. 

And the crux is the following; if very highly popular websites say for instance Google, 

Yahoo, MSN, etcetera are pointing towards your website. If there is a hyperlink from all 

these websites to your website, of course this is a dream for every person to your website 

then immediately your page rank your importance actually raises. And whatever search 

term is fed to the engine there is a high probability that your pages retreat back and 

shown to the user. 
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So, this is the basic idea. 
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So, now with this basic idea we will (Refer Time: 25:17) to finally defining a 

quantitative measure for the page rank. 
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Again, you have say the popularity of a particular node being expressed by x i. Then you 

can write here x i is equal to alpha, the same type of expression that we have already 

written. A i j x j plus beta, but there is only one small difference from the Katz centrality 

in that, what you do is you now divide the popularity of the node x j by the total out 

degree of x j.  



Suppose, there is this node j it has an out degree of k j out and say the popularity of x j of 

the node j is x j, then each of the individual nodes that j is pointing to one of this is 

actually the node i with popularity x i. So each of them is receiving a fraction x j by k j 

out from the node j. So, this fraction of popularity from node j actually is given to node i. 

So you basically appropriately normalize the popularity of x j and distribute it among all 

its neighbor. That is the only difference from the Katz centrality; Katz centrality did not 

have this normalization. 

Now, one problem that immediately comes up is that if k j out is 0, that is the out degree 

of j is 0. That means, this would immediately say that j will not be able to contribute to 

the centrality of other nodes. This will immediately say that node j will not be able to 

contribute to the centralities of any other node. In such cases we assume that k j out is 

preset to 1 in order to make our computations easy. In all such cases where k j out is 0. 

So, x j will be the popularity of j, so this component will actually go to 0, because it will 

contribute to 0 popularity to all other neighbors. We set k j out to equal to 1 so that we 

avoid division by 0. 

In that particular situation we can write again the vector form of the equation as A alpha 

A, now since this k j out is here we have this matrix D inverse x plus beta into 1, where 

these are all vectors. So now we can again express the vector x as the subject of the 

formula and this will give us D inverse. Where D inverse, where D is the diagonal matrix 

containing all the out degree values. Where D is the diagonal matrix containing all the 

out degree values and D i i is nothing but max of k j out and 1. If k j out is 0 then it is set 

to 1. 

Thank you very much. 


