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Welcome back. Last day we got introduced to our self to this centrality measures. You 

are trying to understand like, how important a node is or how prominent a node is in a 

network. And one of the measures that we defined was degree centrality. Now, today I 

start with a claim that degree centrality is not the only way to indicate the importance of 

a node in a network. 
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So, that is what I also write down in the slides is that degree of a node does not you know 

actually essentially determine all the importance of a node in a network. And I would 

probably think that you would also tend to agree. One of the striking examples or one of 

the good examples to substantiate this claim is the following one. 
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So where you see in the slides that there are these two regions C 1 and C 2 and these two 

regions are only connected by the vertex v sitting in the middle of the two regions. This 

is this node is kind of bridging between the two different regions of the networks. And 

definitely these nodes are very, very important, for instance if you want to pass 

information from region C 1 to region C 2 you have to only rely on v there is no other 

way. 

So, there are lots of interesting and important repercussions of having nodes like v in a 

given network. But then the question is that how to quantify the presence of such nodes 

in a network. And that brings us to what we call the Betweenness Centrality of the nodes 

in a network. 
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Now if you try to question like, how does the node v differ from the other nodes; if you 

try to make a question like this, so what metric or what property can differentiate 

between the node v and the other nodes in the network. One of the immediate things that 

you can think of is probably the shortest paths. The number of shortest paths that are 

passing between any pair of points through v, if that is very high with respect to the total 

number of shortest paths that in general pass through the pass between those two points 

then you can say that v kind of sits in the middle of these two pair these nodes and is 

acting like a bridge. 

For instance, if all the shortest paths between say two nodes s and t, if all the shortest 

paths get routed through v so then the betweenness of node v in the context of the pair of 

nodes s and t would be very high. That is what we try to define as betweenness centrality 

as in the next slide 

So basically, Geodesic distance is nothing but the shortest distance or the shortest path 

length. So centrality or betweenness centrality of the node v is nothing but the number of 

shortest paths passing through v, number of shortest paths between s and t passing 

through v expressed as a fraction of total number of shortest paths passing between s and 

t. Basically, you try to express the number of shortest paths passing through v relative to 

the total number of shortest paths between s and t. And that you do for all pairs of nodes 



in the network in the context of a particular vertex v. And that is what defines g v as I 

show in the slides. 
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So g v is nothing but the sum over all pairs, s and t where neither s or t is actually v sum 

of the ratio of sigma s t v which is the number of shortest paths that pass through v from 

s to t divided by the total number of shortest paths between s and t. So now given this 

formula if you try to compute the betweenness centrality of the node v in the picture on 

the slide then you get a number as 2 n 1 into n 2, where n 1 is the total number of nodes 

in the region C 1 and n 2 is the total number of nodes in region C 2. That is basically, all 

shortest paths between all pairs of nodes in this two regions actually pass through v. And 

there could be very important repercussions of say removing v in the context of 

particular network. 
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For instance, say if you have an epidemic spreading network. Suppose there is an 

epidemic spreading over this network that I have shown you in the slides. Let us draw it 

for simplicity again. Suppose you have the two regions C 1 and C 2 with some nodes out 

here and some nodes out here and all these nodes are connected via this node v. Now 

suppose there is some disease outbreak here in this region and suppose this person is 

infected immediately the others in this region will also get infected right, and this 

infection will now pass on. 

And in if the node v gets infected somehow then there is a high chance that all the nodes 

in the region C 2 will also get infected through v. One of the important questions is like 

in such networks is whom to vaccinate, and possibly if you have a limited number of 

vaccines then the first person that one should vaccinate in such an epidemic spreading 

network is perhaps the first person to get vaccine. If there is a limited supply of vaccine 

then nodes like v should be vaccinated first. 
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As I say its removal could have very strong repercussions in various networks like; the 

epidemic network example we have already taken, in the information networks say for 

instance that the internet router network that we were looking at in the last days lecture. 

If one of the nodes like v gets shuts down at some point in time then the entire internet 

backbone of a particular region might fall through. So it is very important to maintain the 

functionality, maintain the well being of such nodes which sit in between, otherwise 

disconnected regions. It is only through this particular node that the two regions get 

connected. These types of nodes are very, very important. 

Similarly in the traffic network, if a particular road or is the only connecting road 

between say two different geographies and if that there is a blockage in that road then 

you can immediately understand that the entire traffic flow from one region to the other 

region will get disturbed. So these kinds of nodes actually are important in various 

different contexts. 
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So that is all about the betweenness centrality. Now, the question is that sometimes 

suppose in case of information spreading that is happening in a particular network and 

there is a node v, now these nodes can actually have a very strong advantage of keeping 

the information restricted to itself and not passing it or not forwarding it any further. This 

is a undue advantage that these types of nodes actually get. If the node wishes then it can 

keep the information upon to itself and not pass it on any further. 

So, in such cases passage of information to the rest of the network is completely blocked. 

In these contexts such nodes are also often called brokers or social brokers. They keep 

the information and they actually do not pass it unless and until there is some extra 

advantage given in terms of say money or something to them, so unless or until that is 

done actually pass on the information any further. 

So then, what is the way out? The way out is to look for not so strong brokers in the 

network. So the idea is in terms of quantification as I was telling you that for 

betweenness centrality you need to look for shortest paths. What if we could look at not 

all so short paths, little longer ones? If we could also include in our definition not only 

the shortest paths, but if there is any path between two regions through a node v not only 

shortest paths then we consider it. 

Of course, as soon I give you this definition there is a limitation to it. For large graphs it 

is very difficult to compute paths of any length, this is well understood, this is the hard 



problem. So paths of computation of paths of any length are a very difficult task. So, 

only we can do so in smaller size graphs. 
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So that idea where you can include other paths in the definition gives us a new definition 

which is called Flow Betweenness. In flow betweenness, the major difference between 

betweenness centrality and flow betweenness is that in case of flow betweenness you can 

consider not only the shortest path but also any other path, path of any length that passes 

through v between a pair of nodes s and t. And like a motivating example is what I have 

given in the slides in green. So this is the simple broker example that I was talking of, 

but in the probably in a context which is more relevant to you people you can read it up 

yourself. 
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Now the question is like we have so far learned at least two different ways of measuring 

the importance of a node in a network; one of them was the degree centrality and the 

other one of was betweenness centrality. Now the question is that all is there any other 

way in which the prominence or the importance of a node can be defined. The answer to 

this is, if you ask me the answer to this is yes. Another example that I will put forward in 

front of you now is the following. Suppose, you have a sexual contact network like the 

Swedish sex web that I have showed you earlier, so in that context this particular 

example is very relevant. 
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Say there is one node A and there is another node B out here, and the node A has many 

sexual contacts whereas, the node B has only one sexual contact C. Now given this piece 

of information our question is whether from this information we can say which among 

these two nodes A and B is more prone to say a Sexually Transmitted Disease. Who 

among A and B is more prone to an STD? Now in order to answer such questions, if you 

just look into this particular snapshot or this much information from the graph probably 

that is not enough. 

And some of you probably have already guessed why, because it might be the case that 

although B has one partner C, but C itself has many, many, many, many, many sexual 

partners. In that case the chances that B gets infected by a STD are way higher than an 

itself. So, many means I really mean many, many. The idea therefore, is that your 

propensity to get infected depends on your neighbors' propensity to get infected and that 

in turn depends on their neighbors' propensity to get infected and so on and so forth. So 

this is a Recursive Definition of centrality. 

In other words you can also think of it in terms of prominence or importance. So your 

popularity or prominence is actually determined by the popularity of your neighbors or 

of your friends, their popularity is determined by their friends and so on and so forth. So 

your popularity is actually a share from your friends, your friends of friends, your 

friendses friendses friends and so on and so forth. So it is a recursive definition. And the 

best way to encode this recursive definition is in the form of what we will now study the 

Eigenvectors. 



(Refer Slide Time: 16:36) 

 

Eigenvector Centrality, as the name suggests this will borrow concepts from your school 

days where you have been introduced to the idea of eigenvectors and simple linear 

algebra. So the idea is very simple. You have to express the popularity of yourself in 

terms of the popularity of your neighbors and so on and so forth. Suppose you guess, so 

we make a guess that the initial popularity of a vertex or a node i is given by say x i 0. 

Now in every step we look for improvements of x i. Now the improvement x i 1, that is 

improvement at step 1 can be written as A i j x j 0. That means, suppose you have a node 

i out here and it is connected to some j other nodes and j’s popularity is say x j 0, then 

the popularity of i in step 1 is the sum of the popularity of all its neighbors. Here A i j is 

nothing but the entries in the adjacency matrix which holds the neighborhood 

information. 

So, if i is a neighbor of j then in the adjacency matrix there will be an entry 1, otherwise 

the entry will be 0. This is a 0, 1 matrix, a binary matrix which actually expresses the 

neighborhood relationship of i. So now, as you can see from this expression out here 

what you do is you look at all neighbors of i, that is why A i j if j is a neighbor of i then 

the popularity of j counts into the new improved popularity value of the node i. And in 

this way you keep on doing this. 
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So, you continue improving the popularity values, so this you do for every node 

popularity values. Continue improving the popularity values for every node until there is 

no further improvement possible. This can be very nicely encoded in a functional form. 

So, x t is x t which is kind of a vector of all the popularity values of all the nodes in the 

network is nothing, but the adjacency matrix times the popularity value at t minus 1, and 

this continues. This you can write as A multiplied by A x t minus 2 this can be written as 

A into A into A x t minus 3 and so on and so forth. 

Finally, x t can be expressed as a power t, so the adjacency matrix is multiplied with 

itself t times a power t x 0. So you start with any arbitrary x 0 values some initial guess 

he final t values will be the point at which there is no further improvement possible you 

will have a situation like this, where this t is like very large so after that point there is no 

further improvement. The more and more powers you raise A to there is no further 

changes in the matrix. 

And finally, you get the resultant x t values for each node. This is the score or the 

popularity score of each of the nodes. This x t contains finally the popularity score of 

each of the nodes. So this is actually referred to as the Power Method by Hotelling. This 

is what I have written in this slide. 
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So this is called the power method by Hotelling, and actually this is the method which is 

usually used to compute the eigenvectors of a given matrix. 

Now, the question is like we have so far been able to give a nice expression to this x t’s 

which is nothing but the popularity scores of each of the individual nodes after some say 

sufficient time steps t after which there is no improvement in the scores. Now does this 

value get related or in some way is it related to the eigenvectors, that is what we will try 

to see next. In order to do so we will start with a very simplistic assumption. 
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We will say let our x 0 values that is the values of the popularity the initial guessed 

values of the popularity that you start off with for all the individual nodes. So, at time t 

equals 0 you have an initial guess for each of the individual nodes. So, let that x t be a 

linear combination some of the eigenvectors of the matrix A, that is the adjacency 

matrix. Let us express x 0, so let us choose x 0 in such a way that it is actually x 0 that is 

a vector like x 1 0, x 2 0 until x n 0 if there are n nodes in the system is equal to a linear 

combination of say some constant C 1 into one of the eigenvectors say v 1 or say v i 1, v 

i 2, v i 3, v i 4 and so on and so forth up to v i n. So this is the nth eigenvector. So, this 

class C 2 sums v j 1, v j 2 and so on and so forth. 

So, if you express this x 0 as a linear combination of this eigenvectors then you can 

immediately write x 0 equal to sum of c i v i for all i’s. From this since you have already 

have an expression for x t you can write x t as A power t, we saw that x t is equal to 

nothing but A power t into x 0. So, we can write that x t is equal to A power t i c i v i. 

This can be written as i lambda i t c i v i, where you know from the eigenvector equation 

that A x is equal to lambda x or A v. where you know that A v is equal to lambda v. That 

means, A square v is equal to lambda square v and so on and so forth. From there you get 

this particular equation. Here, in this case lambda is the eigen value of the, let us write 

later on. 
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So, lambda is the eigen value corresponding to a particular eigenvector. From there you 

can write x t, if you see some simplification will tell you that you can bring out the 

principle eigen value outside and you can write the rest as lambda i by lambda 1 power t 

for all i c i v i. Now, in the limit of t to infinity x t by lambda 1 t is nothing but c 1 v 1, 

because everything else all other values goes to 0. 

So, t tends to infinity means this lambda 1 is larger than all the other lambda values so 

this fraction is always lower than 1. so this power always tends to 0, so everything 

becomes 0 except for the first one except for the case where i is equal to exactly 1. When 

i is equal to 1 this is lambda 1 by lambda 1 that becomes 1 power t that is 1 c 1 v 1 plus 

the rest x everything goes out due to in the limit t tends to infinity.  

Basically, what you have is that the popularity values correspond to the principle 

eigenvector v 1. If you just calculate the principle eigenvector of the adjacency matrix 

you immediately get the popularity scores that are why this is called the Eigenvector 

Centrality. 

Thank you. 


