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Community Analysis – IV 

 

In the last lecture I defined the notion of quality function and I told you that modularity 

can be thought of as a way of identifying the quality of a given partition and then, we 

were trying to define the modularity. So, in order to do that what we did was we 

expressed the total number of edges that are represent within communities as a fraction 

of the total number of edges in the network, but then we saw that this could be 

problematic. Why? It is because then you can assume the whole network as a single 

community and your modularity will get to 1. So, therefore, you do not get to it as the 

actual quality of the partitions. 

In order to overcome this problem, what we try to do is again we use a similar concept as 

is done while estimating correlations or mixing coefficients. You try to remove the part 

that is expected, you try to discount the part that happens just by chance the expected 

number of connections between communities that could happen just by random chance. 

So, basically what we will try to do is, we will have a solution proposed like this. 
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So, the solution is subtracted expected number of edges if no community structure is 

present. So, we try to estimate even if there is no community structure present. What is 

the probability that there could be an edge between a pair of nodes or they fall in a 

partition? So, suppose you have an edge E vw. So, now the probability that this edge 

exists, edge is present if connections are assumed to be random. So, we assume that you 

take every pair of nodes and the connection between them is just a random variable. So, 

the connections are just by chance. 

In such a case, the probability that there will be an edge between a pair of nodes is 

nothing, but will be proportional to k v k w normalized by the total number of edges in 

the network. So, basically if there are two nodes with certain degree values, then 

independent of anything else, the probability that they will have an edge between them. 

If connections are completely random in the graph depends on their degree only and the 

probabilities just the normalized degree normalized by the role number of edges in the 

network.  

They are normalized by actually the total degree. Basically you have the probability of 

assuming that there is an edge between a pair of nodes is equivalent to the product of 

their degrees normalized by the total degree. So, you basically discount this part. So, we 

assume that by random chance if there is an edge between a pair of nodes, then that 

might be problematic in estimating the modularity correctly. So, even within a partition, 

there might be an edge by chance. So, we remove this chance factor from the definition 

of modularity and therefore, we have the revised definition as follows. 

The modularity function q is nothing, but one by twice m as we have already seen a v w 

that is if there is an edge existing by disc with a discount. Now, if there is an edge 

existing by random chance over all v w delta cv cw, so we have now used this 

discounting factor by means of which we are removing that part which is we are 

subtracting that part which can be expected just by random chance. So, in that way we 

have now removed the original glitch in the definition.  

Now, you see if you include the whole network that would not give you the best quality 

function that would not give you the best quality induction in indication rather if you 

actually divide it into nice sub modules where each of the sub modules are much more 

densely connected, then you will have a larger modularity value. So, given this quality 



function now, you see like if you have this quality function, these actually also tells you 

that how good a partition is now you can try to therefore also optimize this function and 

have community structures.  

So, any quality function that way can also be used as a metric to identify community 

structures. So, as we have defined the community, the quality function in originally 

quality functions were used mostly to identify the goodness of a partition, but then since 

they are testing the goodness, they themselves can also be used as an optimization 

criteria for identifying good communities structures and that was the idea of the 

algorithm that was proposed by Newman and more in one of their early works, where 

they actually used the modularity function in order to identify communities structures in 

a graph and this is a very simple two step algorithm as follows. 
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So, the first step is start. So, this is again an agglomerative algorithm. So, start with n 

distinct vertices in n different clusters. So, you start with as you do in all agglomerative 

approaches, you start with n if distinct, but this is in n different clusters. Now, at each 

step join two communities that produce the largest increase or the smallest decrease in 

the value of q. So, basically you start with each individual node in single community, 

single term communities.  

Now, at every step you actually try to join a pair of communities based on whether when 

you join the overall modularity of the graph increases or not if the overall modularity of 



the graph is higher than the previous step or it is at least if it was negative in the previous 

step, it is lower negative in the next step then or if it is like positive, more positive in the 

next step, then the earlier step you allow this combination. You allow join of these two 

communities into a larger communities otherwise not. So, it is again a hill climbing 

approach and in this way you iteratively improve. So, it is a community optimization 

technique whereby you optimize the modularity function in each step in order to get 

better and better communities structures. 

So, this is one of the very simple variations of community finding algorithm 

agglomerative approaches to community finding algorithms using the idea of a quality 

function and we can use the quality function because they themselves are tuned to 

identify good partition or the goodness of a partition now later on. So, these particular 

algorithm was tested on many real world networks and it was shown to work well, but 

then later on there was an even more sophisticated version of this algorithm which 

actually became very popular and we will now discuss that particular algorithm which 

actually has become very popular in the current literature because of its very nicely 

maintained website.  

You can yourself go and find out this particular algorithm and execute them. So, it is 

very nicely documented and this is the algorithm that was developed by a group in (Refer 

Time: 10:13) and that is why it gets its name. It is also named as the Blondel algorithm. 

So, this was like proposed by Blondel in one of their early works in a very highly reputed 

physics journey. 
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So, the idea is that here you again use the idea of modularity optimization, but then this 

is a two pass algorithm. We will first describe the algorithm in steps, in simple steps and 

then we will take an example and look at its execution. So, the algorithm is as follows. 

So, as I said it is two-pass algorithm and the algorithm actually toggles between the two 

passes and in every pass there is an improvement made over the previous pass. So, we 

will write the algorithm now basically the two different passes of the algorithm. 
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Pass I - so in this pass you assign each node i in a different community. So, each node i is 

assigned to a different community. Then, inspect the gain in modularity. If i is removed 

from it is own community and placed in one of its neighbor js community, then remove 

or replace i to that community which results in maximum gain of modularity which 

results in the maximum again of modularity remove or replace i to some other 

community only if the gain is positive. See keep repeating the step b until local maxima 

is reached that is there is no further gain possible in modularity. So, this is the first pass 

of the algorithm. 

So, what you do? You take every individual node and each of them are in single tend 

communities. Now, you try to put it in some other community and see if there is a 

positive gain in modularity. Now, you see where actually the maximal gain is and you 

replace the node i to that particular community and you keep on doing this until and 

unless there is no further movement of nodes possible and a local maxima is achieved. 

Now, we come to the Pass II of the algorithm. 
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Pass II comprises two steps. So, collapse the communities obtained in pass I into nodes 

and two nodes are now connected by the number by an edge that has a weight equal to 

the number of edges connecting these two communities in pass I. So, what you do here 

given the graph structure of pass I. So, you have found out the community structure in 



pass I. Now, each community is observed into a single node. So, each community that 

you have got in the pass I is observed into a single node.  

Now, you have to also define edges between these two between a pair of nodes now. So, 

the edge between a pair of nodes has a weight equal to the total number of edges that was 

passing from one community to the other in pass I. So, in this way you construct concise 

version of the network. So, you observe the nodes into, you observe the communities 

into nodes and then you have edges with weights on them and that forms your new 

graph. 

So, with this new graph what do you do? Repeat the pass I on this new graph and 

continue the process until there is only a single node left in the system. So, as I was 

telling you have to toggle between passes. So, now you have a new graph. Once you 

have from the pass I, you got the community structures, you observed each community 

into a node and the edges between two communities now is equal has an edge weight 

equal to total of number of edges passing through them in pass I. These forms here 

second level graph.  

Now, you again execute pass I on this graph and you will again get a bunch of 

community structures now. Then, again you will observe them into single tend into nodes 

each community into nodes and you will keep on doing this same process until and 

unless you will end up into one single node and now, if you unfold this structure; you get 

a very nice organization of all the nodes into community structures. So, this is actually 

illustrated by an example on the slide. So, suppose you start with this particular graph 

here. So, from this graph after a first level modularity optimization say you arrive at this 

particular graph, so this is after the execution of the first pass. 

So, there is one module which has all the nodes marked in red, there is another module 

which is marked in green, a third module marked in blue and the fourth module marked 

in light blue. So, now from there you do a community aggregation. So, now all the red 

nodes are collapsed into one single red node here. Similarly, all the green nodes are 

collapsed into one single green node here, all the blue nodes are collapsed into one single 

blue node here and all the light blue nodes are collapsed into one single light blue node 

here. Now, then after that you try to see what is the total number of edges that are 

passing from one community to another.  



So, in this case you see that there is only one edge. So, this particular edge has weight 

one. So, now, for instance from here from this green module to the weight module, you 

see that there are 4 edges actually passing, 1 here, 2 here, 3 here and there is 4 here. So, 

now based on this you have 4 edges that are passing from green to blue. 

Similarly, you have one edge from blue to light blue and three edges from light blue to 

red. Now, apart from this you also have self-loops here because there is large number of 

edges inside single community. Now, all these edges actually translate in to a self-loop 

with the edges. So, there are 14 edges inside red, the green community. Similarly there 

are 16 edges inside the eight communities and so on and so forth. Now, in this way you 

have the graph structure after the second pass.  

At the end of the second pass, now you again implement the first pass on this and then, 

again you have, so again if you implement you will get some communities structure. 

They can be collapsed and you have even smaller substructure and this will then in the 

next pass get into one single node and then, when you unfold this whole structure, you 

will get the community, the entire community structure of the graph. So, in this way you 

can estimate the community structure of a graph of a real world network by using this 

two-step modularity optimization process and this process is shown to give a much better 

performance than the original modularity optimization algorithm. 

Now, we have seen so far methods based on agglomerative approaches laying the 

hierarchical class string. We have also seen some bisective methods; we have seen some 

methods based on the idea of optimizing quality functions.  

Now, in the last segment in the last lap of this lecture, we will study methods based on 

spectral bisection. So, as I told you already that one can identify community structures or 

components in a graph using the Eigen vectors, using the information about the Eigen 

vectors of the edges and symmetric of that graph. So, most of the graphs that the real 

world graphs that we deal with actually have positive entries and they are usually 

symmetric. So, for such graphs there are certainly few interesting properties that are 

already known and one can leverage all these properties in order to identify community’s 

structures. 

For instance, one of the properties that is known for these graphs is that the principle 

Eigen vector of this particular of this type of graphs or the adjacency matrix of this 



graphs, the principle Eigen vector of such adjacency matrices which have only positive 

entries and which are symmetric, such matrices have a principle Eigen vector whose all 

entries are positive and not only that the other Eigen vectors are actually orthogonal to 

the principle Eigen vector. So, every individual Eigen vector for such matrices is 

orthogonal to each other.  

Now, if we know that the principle Eigen vector of the adjacency matrix is all positive, 

then the other Eigen vectors all the entries cannot be positive and then you cannot have 

orthogonality maintained. So, there will be some entries which are positive whereas the 

other entries will be negative in this vector. So, we know that for the principle Eigen 

vector, all the entries are positive. Now, for the other Eigen vectors also if all the entries 

are positive, then they would become parallel. So, this is not possible. 

So, for other Eigen vectors what is necessary, what is ensured for this particular types of 

adjacency matrices where all the entries are positive and the matrix is symmetric. So, in 

such cases it is ensured that the other Eigen vectors are orthogonal to this particular 

principle Eigen vector and therefore, its entries should contain both positive and negative 

values and the positive values and the negative values, these two types of values actually 

nicely separate the graph into two different components.  

That is the basic idea of using Eigen vectors, basically the second Eigen vector to 

identify the community structure of a graph. So, in order to get a better understanding of 

how this is done, we will try to define certain notions now and then, from there we will 

build up the algorithm. So, the first thing that we will introduce is two different types of 

matrices. 
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The matrix is called the incidence matrix. So, the incidence matrix is defined as follows. 

The incidence matrix i and g of graph g is an n cross e, where n is the number of nodes 

and e is the number of edges matrix with one row each for a node and one column each 

for n edge. Suppose edge e i j is existing in the graph g, then the column corresponding 

to the edge e will have its i th entry equal to 1 and j th entry equal to minus 1 and all 

other entries equal to 0. So, in this way you defined the incidence matrix of a graph.  

Similarly, you have a Laplacin matrix of a graph. The l Laplacin matrix l g of the graph g 

is an n cross n matrix which is symmetric with one row and one column for each node, 

where l g i j. There is i j the entry of this matrix is defined as follows is equal to degree 

of node i. If i is equal to j n is equal to minus 1, if i is not equal to j and there is an edge e 

i j and is equal to 0 otherwise. So, this is an adjacency. This is translation of the 

adjacency matrix where what you have is you have the entry i that is the diagonal entries 

as the degree of that node and all the other entries where there is an edge between that 

node and the other node you have a minus 1, otherwise it is a 0. So, in this way you 

construct Laplacin matrix. 

In the next lecture, we will see how you use these matrices in order to further identify the 

community structure. 


