
Complex Network: Theory and Application 

Prof. Animesh Mukherjee 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture – 14 

Community Analysis – III 

 

Welcome back. So, in this last lecture we have started looking into this idea of doing a 

bisection of the graph in order to find out community structure, and we have been 

proposing this method of edge betweenness in order to execute this bisection.  

So, and we said that it is a very compute intensive process and therefore, we were trying 

to look into methods in which one can reduce the computation over to some extent, and 

so for that we introduce this idea of having single source short dispatch identification 

using BFS and we saw in the simple case where you have BFS tree, a shortest path tree is 

not very difficult to find out the path counts passing through every edge and from that to 

have a aggregate view of the total edge betweenness of every individual as edge. 

Now, we say that we will talk about the generalised version of this in this current lecture. 

So, again if you look at this previous example, we had a graph snapshot like this. 

(Refer Slide Time: 01:29) 

 

Which was just like a shortest path tree and therefore, it was very easy for us to calculate 

the comp edge betweenness components where every individual edge, but imagine if we 



had a slightly more general case where it is no longer a shortest path tree, but a shortest 

path graph basically, which means that this implies that from a sources there can be 

multiple shortest paths to other nodes in the graph. So, we will take a small example 

again.  

Suppose, if I modify the previous example into something like this. So, now, there are at 

least two shortest paths from S to this particular node and therefore, we have to identify 

then. So, also if to this node you have to shortest paths. Therefore, we have to identify 

like a mechanism to estimate the path counts, the promotional path counts or the 

promotional edge betweenness contribution of each individual edge in this generalise 

settings. 

So, we will first discuss the algorithm and then we will execute it on this particular graph 

and see how things work. So, it is a very simple variation of the straight forward BFS 

algorithm that we have already come across in undergraduate classes. 
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The first step is as follows the initial vertex s is given are distance ds equal to 0 and a 

weight ws equal to 1. Step 2; every vertex i adjacent to s is given distance di is equal to 

ds plus 1 and weight wi is equal to ws is equal to 1. Now, then comes the most important 

step for each vertex j adjacent to one of these vertices i, we do one of the following; if j 

has not been assigned a distance that is j has not been explored distance it is assigned a 

distance dj is equal to di plus 1 and weight wj is equal to wi. 



However, if j has already been assigned a distance that is, it has been already explored 

and it is such that dj is equal to di plus 1 then the vertices weight is increased that is there 

is a. So, these actually confirm that there are actually two shortest paths leading from that 

particular vertex. So, that is why we increase the weight of that vertex to whatever the 

weight of the vertex was plus wi. There could be a third case, if j has already been 

assigned a distance and dj is less than di plus 1 then do nothing, that is we are probably 

back tracking. So, that is why we do not do anything; now, the last step. 
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Step 4, repeat from step 3 until no vertices remain that have their distances assigned, but 

have neighbours whose distances have not been assigned. 

So, you repeat this process until and unless all the vertices and its neighbours have been 

assigned a distance as well as the weight. So, basically this entire algorithm can be 

actually implemented using a queue using a queue structure just like BFS, now what 

does the how do we interpret the weight. So, what is the weight? So, weight on vertex i 

what does this indicate this is the number of distinct as I was telling you this is the 

number of distinct paths from the source vertex to i. So, basically that is being counted in 

the variable wi. So, the weight of the vertex i wi, which is the weight of the vertex i is 

nothing, but the number of distinct shortest paths from the source to the node i. 

Now, how do we calculate the contribution of edge betweenness? So, this can be done 

very easily. So, what you do is if there are two vertices i and j connected by an edge and 



j is further in the tree than i. So, j is further in the tree from s, j is actually further then i 

in the tree from s. If this is the situation that j is from s if you start from s j is further and 

i is nearer and there is an edge between i and direct edge between i and j then the 

contribution of this particular edge is proportion at to wi by wj. 

So, basically what you find out is, what is the fraction that is going through i and out of 

which how much is going through j basically? So, that is actually expressed by this 

fraction wi by wj. So, therefore, we can again write down how to calculate the edge 

betweenness from the shortest paths counts using the following three step algorithm. So, 

the first step of the algorithm is finding every ‘leaf’ vertex. 
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As we have done in the case of the shortest path tree, every leaf vertex tree that is a 

vertex such that no paths from s to other vertices no path from the source s to other 

vertices go through t. The next step is for each vertex i neighbouring t assign a score to 

the edge it to the edge actually you can write from to the edge from t to i wi by wt. So, 

this is the weight you assign for each vertex i neighbouring to t assign a score. So, using 

this score we will calculate the edge betweenness you assign a score of wi by wt. So, 

now, then you have to work upwards as we did in the earlier case. 

Now, starting with edges that are farthest from s, we work upwards. To the edge from 

vertex i to vertex j with j being further from s assign a score equal to one plus you assign 

the score one plus as you are doing in the last case one plus the sum of the scores of the 



neighbouring edges below it and multiply this sum by wi by wj. So, this is your making 

it proportion it to the number of path counts that passes through that particular edge ij. 

So, given the previous example, we will now see how to calculate the edge betweenness. 
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So, we have the source node s. So, this is the example that we looked in. So, then what as 

per the algorithm what we will do. So, we still have the distance and so, we will initially 

assign the weights. So, the weight here is 1, the weight here is also 1, the weight here is 

1, the weight here becomes 2, the weight here is 1, the weight here is 300 and the weight 

here is 1. So, this is the first part of the algorithm through which we calculate, we said 

the distances and the weights on the vertices.  

So, once we have the weights on the vertices set, now we will have to calculate the 

contribution of the edge betweenness factors. So, for this particular edge you have. So, 

this is a because this node is a leaf node this edge actually will be wi by wj which is 

nothing. So, this is the leaf node. So, it is t. So, and this is another internal node i. So, the 

fraction here will be nothing, but wi by wt which is equal to 1 by 1 in this case that is 

equal to 1. 

Now, for this particular example it is wi by wt which is nothing, but 1 by 3 for this 

particular edge you again have wi by wt in this particular case it is 2 by 3 in this way 

now you have to work upwards. So, for instance let us take this particular edge. So, this 



is you have 1 plus coming from bottom is 2 by 3 and this is multiplied by 1 by 2 this 

actually is equal to 5 by 6 in this way you can calculate the contributions of each of the 

edges just by following the second part of the algorithm and you can verify that we will 

get contribution for each of the edge as we have written here. So, so in each of this it is 

very, very simple state. So, these 7 by 3, again we can repeat this is equal to 1 plus what 

is coming from bottom, there is 1 from this edge contribution that is 1 by 3 plus, this is 

coming there is one coming from here. 

So, in this way you can calculate the contributions from all the different edges that lie 

below it and from that you can construct the contribution sorry, this is 1 plus 1 plus 1 by 

3 and multiplied by 1 by 1. So, that is 1. So, this gives you 7 by 3. So, in this way you 

can find out the contribution of each individual way each individual edge towards the 

edge betweenness. So, this is for single source now you can consider every individual 

node as a single source and from there you can calculate you can repeat this process and 

find out the total contribution of edge betweenness of each individual edge ok 

So, by this you see that we have actually reduced the complexity of the algorithm by at 

least one order of n, why because now from s from every individual s you can calculate 

the shortest paths to all other nodes in the fs time, which is equivalent to the number of 

edges now you have to do it. So, there are n such sources. So, the complexity becomes 

order m into n because for every single source you need m time. There are n such 

sources in the network if there are n nodes in the network that will give you order mn 

and now you have to execute this for every individual edge until and unless all the edges 

have been removed.  

So, the total complexity is order of m square n. Now, again for sparse graphs as we know 

we can assume that m is very similar to n that implies the total complexity of the 

algorithm is order n cube which is at least one order less than the naive version of the 

approach. 

In this way, actually Newman and Girvan were successful in computing the community 

structure of various real world networks. Again, one of the examples in execution, they 

started with this particular networks here if you look at the slides. So, start with this 

particular network. 
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So, and then after 100, when there are no cuts in the network this is how the networks 

look after 100 edges have been removed, 100 edges with top betweenness and treaty 

have been removed the network looks like this then there are 120 cuts you already see 

that there are at least two components and then from there if you have even more like 

500 cuts, you see that there are small sub modules that get generated and each of this are 

much more dense sub modules which can be thought of as correlates of the community 

structure of the network. So, in this way you can actually envisage to construct the 

community structure of various real world networks using this bisective method. 

Now, since we have learnt quite a few techniques to identify the community structure of 

networks, the next obvious question is like once we have got this community structure 

how do we test that whatever we have got is good partitioning that we have made is a 

good partition. How do, when do we call a partition good partition? So, basically in order 

to do this, in order to identify if a partition is a good partition, we need to define the 

notion of something called the quality function. 
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So, quality function can be defined is in various different ways, but one of the earliest 

ways and one of the very successful and popular ways in which this was defined was by 

again Girvan and Newman in 2004 in one of their papers, where they defined the concept 

of modularity which is actually, basically it tries to estimate the density of edges in a 

community. So, it tries to estimate the density of the number of edges within a 

community. 

So, that is the basic intuition and if given a community there are large number of internal 

edges inside the community; that means that this is a good partition in that is people who 

are more densely connected. You have been able to successfully partition them into sub 

structure that is the idea. So, if we try to write the formula it is a very simple formula. 

We start with the basic notion and then we see what could go wrong and then we will 

correct the formula. So, basically as I said it measures the density of the edges inside the 

community. 

So, this is how we can try to define the notion of modularity. So, what you write at the 

denominator is the sum of the total number of edges in the numerator you have in the 

numerator, you have you see if there is an edge between a particular pair of vertices v 

and w and you also check if v and w are part of the same community. So, delta is a 

indicator function which tells you if delta cv cw are in the same community if v and w 

are in the same community then delta cv cw is equal to 1 otherwise it is 0.  



So, basically what you try to count here is, what is the number of edges that are present 

between the nodes inside the community and you submit overall pair of nodes and that 

you normalise by the total number of edges in the network? So, this translates to 1 by 2 

m sum of v w a v w delta cv cw. 

This works as, where m is the total number. We are assuming that m is the total number 

of edges in the network. So, then if you look at this formula you immediately find that 

there is a problem hidden there. So, basically we are trying to find out the quality of a 

partition and we are trying to find out the density of the edges inside that partition and 

that would be an indicator of its quality of its goodness quality, but then if you have this 

particular formula what would happen is that you can actually include the entire network 

into a single community and then you will have these values equal to 1.  

So, you can make artificially make the modularity equal to 1, if you have all the nodes of 

the networks in a single community. So, this is a very big problem big glitch of this 

formula and we have to somehow this problem.  

In the next lecture we will see how we actually adapt this formula in order to take care of 

this particular problem and have a final formula which actually works well as quality 

function. 


