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Lecture - 10 

Social Network Principles – III 

 

In the last few lectures, we have been talking about Social Network Properties mainly 

and the immediate previous lecture, we talked a little bit about social roles and the idea 

of equivalences. And we also introduced the specific case of structural equivalence 

where we said that two nodes are structurally in equivalent if they are farcically 

substitutable in the network that is they have the exactly same set of neighbors as we saw 

in the last example, if you look at the slides. 
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We had this same Wasserman-Faust graph and then we said that nodes E F and H I are 

structurally equivalent to one another and that is why you see they define a equivalence 

class in themselves. 

Now, the point is that in many cases it is very difficult to find, in many real graphs it is 

very difficult to find exact structurally equivalent pairs of nodes. So, what we basically 



resort to is some sort of degree or extent of structural equivalence. 
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So, basically the idea is that if although we do not have many cases were two nodes are 

perfectly six substitutable, but are there cases which are like almost substitutable, the 

question is like are there cases which are almost substitutable. So, in order to do this in 

order to have a quantitative understanding for this, what we have to basically look into as 

we saw for structural equivalence we have to look into say the neighborhood, and the 

proxy for structural equivalence will be the count of number of common neighbors 

between a pair of nodes. 

So, basically let us take a small example and see say, for instance, you have two nodes 

here one named X and the other named Y. Now, say also they have a bunch of neighbors 

A, B, C, D, G and H. Now, suppose the neighborhood structure is defined like this by the 

black edges that I am drawing. So, you see if you look at these example what you find is 

that num node X and node Y has a common neighborhood of four other nodes, A, B, C, 

D whereas, X has two other neighbors G and H which are not connected to Y and Y, 

similarly has two other neighbors F and E which are not connected any way to X. 

So, basically we quantify the extent of equivalence or the extent of structural equivalence 



in terms of the number of common neighbors between every pair of nodes in the graph. 

Now, how to estimate this? So, if you look at the adjacency matrix. 
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So, imagine the adjacency matrix of a graph. So, if I call that adjacency matrix A, every 

entry i j th entry. So, this is the adjacency matrix. Now, i j th entry which we sometimes 

referred to as A i j is basically denotes if nodes i and j are neighbors in the network. In 

this way, if you look at the adjacency matrix you can find out all the neighbors of i. So, 

what will these be, the row corresponding to i will give you all the neighbors of i.  

So, basically i will have a row in the adjacency matrix of size 1 to n minus 1, if there are 

n nodes in the graph actually 0 to n minus 1 including i. So, if there are n nodes in the 

graph and then you have 0, 1, 2 so on and so forth. So, if node i is a neighbor of node 0 

then you put A 1, if it is not a neighbor of node 0 then you put A 0. In this way you make 

a vector of neighbors of vector representing the neighborhood of i. 

Similarly, you can construct a vector representing the neighborhood of j. Now, given 

these two vectors you can very easily find out the common neighborhood, what will be 

this? Now, the common neighborhoods, basically if you look into these two vectors, the 

points where both of the entries in these two vectors are 1, indicate that both of them 



have this particular node common as their neighbor. So, if you just simply take the 

product of the two vectors you get a notion of the common neighborhood basically, that 

is what. 

So, we call n i j the number of common neighbors and this can be calculated as using the 

following formula A i k A k j for all such case, where both A i k is 1 and A k j is 1, these 

value will be 1, otherwise it will be 0. If any 1 of them is 0 and the other is 1 or both of 

them are 0, this value will be 0 only when both of them are 1 that is both i is a neighbor 

of k and j is a neighbor of k. In all such cases, this factor this product will lead up to 1 

and this will give you the count of the common neighbors between i and j between the 

pair i and j. 

So, if you note carefully, this also expresses n i j also expresses i j th entry of the A 

square matrix. So, that is the adjacency matrix squared, the adjacency matrix made a 

product with itself. So, that the A square matrix every entry in the A square matrix is 

nothing, but n i j that is the number of common neighbors between i and j. So, in this 

way also n i j can be interpreted.  

Now, see we are telling that we want to quantify the extent or the degree of structural 

equivalence and number of common neighbors is the proxy that we want to use, but then 

like if you have if there is a pair which out of 100 neighbors 100 total neighbors have a 

common neighborhood of 3 and there is another one which out of 10 common neighbors 

have a total neighborhood of 3 that makes a difference actually. 

So, basically what I am trying to point out is that this particular factor needs to be 

appropriately normalized. 
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So, n i j needs to be appropriately normalized to correctly express the degree of 

equivalence fine. 
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So, in order to do this appropriate normalization, we resort to various different methods. 

The first method that we will talk about is; please look at the slides. The first method that 



we will talk about is cosine similarity. So, what does this cosine similarity say? So, 

cosine similarity basically tries to measure the cosine angle between a pair of vectors. 

The cosine similarity tries to measure the cosine angle between a pair of vectors. 

So, here as we said in the last part, that you can express every node in the graph as a 

vector of it is neighborhood. Now, if you take the cosine similarity between these two 

vectors, say the vector it for representing the neighborhood of i and the vector 

representing the neighborhood of j. Now, if you take the cosine similarity or the cosine 

angle between these two vectors then if this cosine angle is 0 that means the cosines in 

the angle is 0 means that they are perfectly aligned. These two vectors are perfectly 

aligned that is they are exactly the same so that means, cos theta in this case will be 1 

whereas, if these two are completely orthogonal to each other then the theta angle will be 

90 degree and cos theta will be 0. 

So, basically perfectly similar cases we will have a cosine angle of 1, we will have a 

cosine angle of 0 with cos theta evaluating to 1 and perfectly orthogonal cases, we will 

have a cosine angle of 90 degree with cos theta evaluating to 90. Now, this actually is 

expressed by the formula that you see on the slide. 
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So, take two nodes x and y and say, x is the vector corresponding to node i and y is the 

vector corresponding to the node j. So, x represents the neighborhood vector for node i 

and y represents the neighborhood vector for node j. 

So, cos theta is calculated as x dot y by the normalization, by the norm of x multiplied by 

the norm of y, this is in terms of the entries of the adjacency matrix. This cos theta, if it is 

if the theta angle is 0 then cos theta will evaluate to 1 and that is perfect alignment that is 

the two nodes are completely structural equivalent whereas, if theta is 90 degree then cos 

theta evaluates to 0 and they are not at all equivalent. Now, this in terms of the entries of 

the adjacency matrix will result into the formula that I write in the last pointer of this 

slide sigma i j. So, sigma i j is basically sum over k A i k k j which is nothing, but n i j as 

we have seen last time. So, this is the number of common neighbors between i and j, 

between the nodes i and j. This is also measured by this dot product here. 

Whereas, the normalization goes like this, it is the square root of the sum of all k sum 

over all k A i k square into square root of sum over all k A k j square. So, this is nothing, 

but the square root of the product of the degrees of this two different matrices, assuming 

that the adjacency matrix is A 0 1 matrix if the adjacency matrix is the 0 1 matrix then 

sum of the square of it is elements will be nothing, but the degree of that node similarly, 

for i you have a degree for j you have a degree and the normalization factor is nothing, 

but the square root of the product of the degrees. 
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So, now finally, you have sigma i j that is the cosine similarity is equal to n i j which is 

the number of common neighbors by square root of k i k j where k i is the degree of node 

i k j is the degree of node j and n i j is the number of common neighbors between i and j 

between nodes i and j. So, this is the estimate of structural equivalence in terms of cosine 

similarity is the estimate of structural equivalence or similarity in terms of cosine 

similarity. So, similarly you can also design various other metric. The next metric that we 

will look into is the Pearson correlation coefficient. 
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. 

So, basically again as we saw earlier that node i and node j can be represented by 

neighborhood vectors like these. Now, given the neighborhood vector of i and j, you can 

basically find out. So, these are basically can be assumed as the terms or the variables 

and. So, there will be 1 vector containing all the neighbors of a containing a 

neighborhood information of i are all the neighbors of i whereas, there is another vector 

which contains all the neighbors of j. 

Now, you can find out. So, these are you can treat these two set of numbers as a 

distribution in themselves. Now, you can find out basically the Pearson correlation 

coefficient between these two numbers. So, what I mean to say, suppose you have two 

nodes i and j and you have. So, with node number 0 i is connected j is not connected with 

node number 1 i is not connected j is connected and so on and so forth. Then may be two 

node number two; both of them are connected to node number, three both of them are 

connected and so on and so forth. So, given these two columns you can find out easily 

find out the Pearson correlation between the two columns, two sets of items and that is 

actually measured using this particular formula that you see on the slide. 

So, it is basically the co variance of x i x j by square root of variance of x i into variance 

of x j. So, the square root of x i covariance of x i x j can be calculated as the product of A 



i k and A j k. So, that is nothing, but n i j as we have already defined minus as I already 

said that for correlation analysis you usually take out the term which is possible just by 

random chance. So, by random chance if two nodes having a particular degree becomes 

neighbors. So, we take out that factor we discount that factor. So, this is basically the co 

variance by the square root of k i minus k i square by n into square root of k j minus k k i 

square by n that is the square root of the variances of each of the distributions the 

distribution of neighborhood of i and the distribution of neighborhood of j. So, in this 

way you can compute the Pearson correlation coefficient between these two vectors. 

Now, if the Pearson correlation is high; that means, if it is close to very close to 1 then 

this is an indication that the two nodes are structurally highly equivalent whereas, if this 

is low or negative then this would mean that the two nodes are not structurally very 

equivalent to each other. So, this is another way of defining the degree of structural 

equivalence. 
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There is yet another method where we use the Euclidean distance. So, again since these 

are binary vectors node the neighborhood can be represented as a binary vector like this 

and the neighborhood of j, can also be represented as a binary vector like this are also 

here same thing. So, then you can find out basically the Euclidean distance between this 



particular vector here and this particular vector here. So, since this is a 0, 1 vector both of 

them Euclidean distance is also proportional to the having distance basically. 

So, you can basically find out the having distance between these two binary vectors, but 

again having distance or the Euclidean distance. So, they should be proportional in this 

particular case because it is a binary vector. So, once you have calculated this you have 

to also appropriately normalize. So, what could be a nice normalization technique here, 

so you remember in the first case, we normalized for the cosine similarity we normalized 

by square root of k i k j in the second case we normalized.  

Again by the square root of the variance of x i and the variance of x j square root of the 

product of the variance of x i and the variance of x j similarly we need to find out 

normalization factor here. So, if you look carefully. So, the worst possible case is that 

none of the neighbors of i are similar to the neighbors of j. So, then in such a case what is 

the extreme Euclidean distance? The extreme Euclidean distance in this case is that the 

neighborhood overlap is 0 that means, the Euclidean distance would be the sum of the 

degrees of the two nodes basically if you take node i say it is degree is k i and you take 

node j say it is degree is k j. 

Now, none of these nodes here are overlapping with these nodes here so that means, the 

distance in this case, is basically k i with plus k j because none of them overlap. So, there 

is no overlap between them. So, the straight forward the total distance between these two 

nodes neighborhood distance between these two nodes are overlap distance between 

these two nodes is k i plus k j. So, you can use this particular term as the normalization 

factor. So, you find out what is the overlap by the worst possible case.  

This is how you can find out, this is the maximum distance that is possible and you find 

out what is the exact distance? Now, here the lower the distance the better you know the 

exact distance this if this distance is low normalized by this particular maximal distance 

then you say that these two nodes are structurally very similar to each other otherwise 

they are very different. 

In this way, we quantify 1 of the very first types of social roles that is the structural 



equivalence. So, the next thing that we will introduce to is called the automorphic 

equivalence. So, in order to understand automorphic equivalence, we have to first 

identify and understand the concept of isomorphism of graphs. Now, this is a very simple 

concept. So, we will slowly define it using a set of examples. So, an isomorphism is 

defined as follows. So, this is a mapping. 
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So, an isomorphism is a mapping. So, mapping means a function is a mapping p from 1 

graph to another graph, whereas if a node u is tied or connected to a node v in the first 

graph then the node p of u should be connected to p v in the second graph. So, basically 

an isomorphism is a form of mapping. We say, we define this mapping as p from 1 graph 

to another graph such that if there is edge between two nodes u and v. In the first graph, 

there will be an edge in the fir between the nodes p u and p v in the second graph and this 

mapping is a bijection. 

So, this mapping is a bijective mapping. We will take a typical example of isomorphism 

and then establish the concept of automorphism. 
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Let us take these two graphs. So, let us call these graphs G 1 and this graph G. Now, we 

can actually construct a mapping p between these two graphs as follows G 1, G 2. So, the 

node number a in the graph G 1 can map to node number q in G 2. Similarly, b in G 1 

will map to z. Similarly c in G 1 will map to y d will map to p and e will map to x. So, in 

this way, you can actually establish a nice mapping relationship a bijective mapping 

between the two graphs G 1 and G 2 and therefore, G 1 and G 2 are called isomorphic to 

1 another. So, using this concept we can now describe automorphism. So, automorphism 

is nothing, but an isomorphism from 1 graph to the same graph itself. 
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Automorphism can be defined as an isomorphism of 1 graph to the same graph itself 

fine. So, this is what is called automorphism, again let us take an example and see. So, 

let us take this graph here. So, we can again define mappings on the graph say let us call 

this graph G, we can have various forms of automorphic mappings here, at least to that 

we can immediately find out p (G) is by first kind, p prime G another kind of 

automorphism. 

In 1 case, basically automorphism, actually constitutes the notion of symmetry notion of 

symmetry in a graph. So, basically here again you see this symmetry is very, very 

apparent. So, look at the line of symmetry indicated by this broken red line. Now, you 

can see that, if you take this as the line of symmetry in a is automorphic to b, d is 

automorphic to c, f is automorphic to e, similarly b is automorphic to a, c is automorphic 

to d and e is automorphic to f. On the other hand, you can also construct another line of 

symmetry across the horizontal plane. 

Here, the automorphism or the isomorphism is established between a can map to f, d 

maps to d itself, f will map to a, b will map to e, c will map to c itself and e will map to f. 

So, in this way you can construct automorphism for a given graph. So, automorphism as 

I am telling you again, I am iterating the fact that automorphism actually constitutes the 



symmetric structure present in a graph. So, it actually captures the symmetry associated 

with the particular graph.  

So, we will stop here. 


