
Object-Oriented Analysis and Design
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology-Kharagpur

Lecture – 08
Bringing Order to Chaos

Welcome to module 5 of object-oriented analysis and design. We have been discussing about the

rule of decomposition in modeling and solving complex system design problems and we just

briefly took a note of the algorithmic decomposition approach and the object-oriented

decomposition approach and in the object-oriented decomposition approach, we have noted that

there will be a set of autonomous agents typically called objects which can pass messages

between themselves.

So that whenever a object sends a message to another object, the sending object it is typically

called the client and the receiving object is called the server and this receiving object will

provide the service that the sending object has asked for and that’s a basic client server model on

which the object-oriented decomposition is structured.

(Refer Slide Time: 01:19)

Now let’s quickly take a look into how does these two decomposition approaches compare. It’s

basically this if you look into the history of how what different methods have been followed they

have been naturally tens of them, if not hundreds of them but the most dominant ones have been

the top-down structure design where you start from the most complex system as a whole and

then you start breaking it down.

This is being the basic approach of decomposition from a very long time old days certainly the

most traditional but certainly this top down approach is closest to the algorithmic decomposition

it does not address issues of data extraction, it does not deal with concurrency, it naturally it does

not scale up well with the extremely complex system. It’s understandable because this is been

very very old approach and therefore in those old days the system capacity itself was very

limited.

So, the hardware capacity itself was very limited so all that you needed to do is to divide that

problem to the extent that the hardware can handle and also there is no question of handling

concurrency because there was always just one single processor executing everything. So, this

approach primarily went on for quite some time and it’s still predominant in many with many of

our designers and many of the design areas and needs to be understood.

But for the broader community of object based and object-oriented languages, programming

languages and paradigms this is kind of become absolute. Next what happened is primarily data

driven design which um kind of dominated the 70s and the 80s where in typical characteristic of

data-driven design is there is a mapping between the input system inputs and the system outputs

and this mapping can directly derive the structure of the software system.

So, data-driven design significantly had a fall out in terms of variety of information management

systems those which have been significantly based on variety of database systems and so on but

naturally they are not very good in terms of f or effective in terms of time critical events time

critical systems so just to give you glimpses a data-driven design system would still be workable

today for say a railway reservation.

Where though you have time bounds there is not much of time criticality and all of that but a

data-driven design method would be disastrous if you are design the breaking system of a car

which has very critical time constraints and very complex processes to follow to honor those

time constraints and what is evolved over the last significantly over the last 20 years and

emphasized over the last 15 years more our object-oriented design methods.

Where you view the whole world, universe as a collection of cooperating objects or autonomous

agents as I mentioned earlier and you treat individual objects and instances of some common

behavior classes and naturally that is what is our interest of study in this course and several

languages including c plus plus and java support that. So, keeping those in mind we can do a

quick comparison between algorithmic and object-oriented decomposition.

(Refer Slide Time: 05:20)

If we look into point wise and algorithmic approach is primarily based on ordering of events

because its primarily encoding of algorithm that is the time order whereas object oriented

systems are more distributed. They emphasize on the agents that our client and servers naturally

algorithmic decomposition leads typically to larger systems, object oriented decomposition gives

you smaller systems.

Because you can make better reuse of common mechanisms, better reuse of common properties.

Leading from this is algorithmic systems get less resilient or in other terms object-oriented

systems are more resilient because since you can follow the stable intermediate forms that we

had talked about the stable intermediate forms are transitions of from a simple system to a less

simple system to a more complex system to more and more complex system.

So you build the system over iterative refinement and at every stage you have an object-based

view of the whole world which may not be the exact view that you want is a simplification of

that but it’s still complete in the in the whole of the staff and therefore can give you a correct

system which in which indicates that you have a much better resilient in terms of these stable

intermediate forms and can reduce the risk by providing iterative refinement in the design

process.

Similarly algorithmic decomposition is flat because you are going task wise whereas object

oriented decomposition can clearly take the separation of concerns. I hope you recall what

separation of concern is that any subsystem can be viewed as an independent one and with a lot

of intrasystem traffic with a lot of intrasytem activity is happening and limited number of inter

system activity is happening.

And now you will understand this intersystem activities are basically the messages that are going

between different objects and intra system activities are also messages going between the

constituent objects of the given subsystem that we are building. So separation of concern

basically use a big advantage in terms of building such systems. in terms of computing model we

have seen that object-oriented decomposition would use some kind of a client server model.

Which is inherently distributed as a high concurrency and therefore in large number of aspects

object oriented decomposition has a really good benefit but before we move on just one word of

caution please do not think that algorithmic decomposition is useless. After you have come to a

certain level of relative primitive in the object-oriented decomposition you will still need

algorithmic decomposition to actually implement different logic actually model different logic

that your system may have.

There are systems there are complex systems which may be very strictly mathematical formula

oriented where even though it is possible to do object-oriented decomposition your algorithmic

decomposition may be a much more direct and easily realizable approach. So it is it is gross

observation that object oriented decomposition will have a lot of advantages but you should

always remain open in terms of starting with the one decomposition approach and at every stage

evaluating, considering as to which approach you should adopt and up to which depth.

In general any design of a complex software system will at different stages have a some bit of

hybrid approach, some bit of combination between the algorithmic as well as the object-oriented

decomposition approaches.

(Refer Slide Time: 09:23)

Moving on to the other properties of complex systems that we can leverage certainly the next

property beyond decomposition is abstraction and we have seen that abstraction is we have seen

that there is a huge amount of disorganized complexity in the whole problem domain arising

primarily due to limitations of human brain both the limitation of storage, the short-term memory

is small, seven typically seven chunks of item even take 12 and the speed is also limited.

It takes a whole lot of time to process new chunk of information irrespective of what that chunk

is. These are all psyhc psychologically proven data that you can you can use and therefore to

address the disorganized complexity, only major tools that we have in hand is abstraction which

basically what it says that just look into what you need to look into, don’t look into the rest.

Don’t look into the details. Always handle it by chunking, chunking basically means dividing

into small pieces.

Small meaningful pieces always handle information by the chunking process so here just a site

one I give an example of chunking suppose you are given to remember this binary number and

I’m sure many of you are young and have sharp memory but you will still have a little bit of

issue remembering them but suppose I chunk them into three bits together, this is the same, same

string I just chunked it into three bits together and then consider these as hexadecimal numbers.

So I got 6251 this is certainly a much easier abstraction to remember or I could actually chunk

them into 4 bits together and represent a hexadecimal representation of ca9. So this is is difficult

to comprehend this is easy to comprehend. This is easy to remember so abstraction is this is this

is one example of chunking and abstraction that is you are trying to reducing the semantic load

of the information that that inherently exist and the role of abstraction and in different ways that

it will play is to continue to reduce this kind of a semantic load.

(Refer Slide Time: 11:57)

Finally the design process benefit a lot from the role of hierarchy we have already seen different

hierarchies in the canonical form and again it can increase the semantic content of individual

chunks by explicitly recognizing the hierarchy structures and we have already observed that we

have already noted that the 2 major hierarchy structures are part of the canonical form, the object

structure which so how different objects collaborate and the class structure which show what is

common between different structures.

And behaviors within a system so these three the decomposition, abstraction and hierarchy

become the main tools the main weapon so to say to win the war against the complex design of

complex systems and from the next module onwards when we start discussing about specific

design concepts, the notions the languages and so on you will see that we will you keep on using

a mix of decomposition, abstraction and hierarchy in different ways to actually solve the

modeling and design problems.

(Refer Slide Time: 13:17)

Now before I close this module, I would just like to sensitize you about 2 things. One is I have

been and will continue to talk about design and so I just wanted to formally define what design

will mean in the in the cases that we are dealing with. This is the meaning which is possibly

common for almost all engineering designs so for us a design will have these basic properties

and or other attributes of concern.

One is it will a design will have a functional specification that is it is for building some system

which meet certain functional requirements otherwise we are not doing a design. The second is

it will need to confirm to the limitations of the target medium which means that I can take a

functional specification and start doing a design assuming infinite amount of computing power

or infinite amount of memory or infinite amount of network bandwidth and so on so forth that is

not realistic.

What is realistic is on one side I have the functional requirements of what needs to be achieved

by building this system. On the other side there is limitations of how what kind of processor,

what kind of architecture, what kind of network connectivity, what kind of storage, what kind of

bandwidth and all these are available for realizing that system. So that is the question of target

medium. The third it must meet implicit or explicit requirements of performance and resource

usage.

I can say that theoretically any algorithm can be implemented on any system even if it has a

couple of bytes of memory but that is not what will give you a working design so whenever we

talk about designed please try to understand the requirements of performance and resource usage

that is performance will be in terms of time, performance will be in terms of may be power and

the kind of resource, time, memory, power, you use make it clear that your design need you will

need to consider these aspects.

The fourth critical factor for a design is it must implicitly or explicitly satisfy the criteria in the

form of artifacts which mean that you whatever functional specification you think of however

sample or have a complex, a system will never meet exactly those functional specification. It will

show lot of other fractured behavior in terms of artifacts in the system and gone of the day is

when we use to ignore the artifacts and then later on fall flat on our face because we did not

consider them at the very beginning at the time of design.

So design must implicitly and explicitly consider the criteria that are acceptable for the artifacts

and finally and last but not the least is certainly design must satisfy the restriction on the design

process itself. In order to achieve the above 4, I do not have infinite manpower, I do not have

infinite money, I do not have infinite computing resources etc and so on. tools and so on to

realize that. So it design process itself has to work within the limitation the constraints of the of

the tools time, cost, human resource and so on.

So whenever we will talk about design, whenever we will take exercise and design all these five

factors, please keep them in mind because missing one or more of them will certainly lead to a

design which will not be workable, acceptable in terms of a working system.

(Refer Slide Time: 17:19)

Finally let me close by reminding you that whatever studies you have done so far, you have done

a lot of exposure to what is called models. A model is a some miniature of a reality. It is not

exactly same as reality, a model is certain aspects of a real situation which is expressed in terms

of mathematical form, graphical form may be in textual form and so on. so we have seen a lot of

model in different domains so I have just on the left.

Specifically I have kept some school level generic domains like in physics we have talked about

time distance equation that is if I know that a train has been moving at 10 kilometers per second,

ab a rather 10 kilometers per per minute and then has been accelerating at a certain rate then our

if after a given period of time, how much the train will cover, I do not really need to make the

train run and measure and find that out.

I can make a model of the time distance equation we typically say s is equal to UT plus half 80

square or something like this which will tell me given the time the initial velocity the

acceleration as to how much distance it has traveled. So that is what is a model which is not but

but it will not tell me what kind of noise the train will produce, it will not tell me whether the

travel of the train will be risk-free, it will not tell me how much power it will consume in doing

this.

Because this model just models a \time and distance aspect and similar models we have seen in

variety of domains that we have already studied like in chemistry, we have seen valence bond

structure which tell us how the different atoms bind to make molecules and bigger molecules and

so on. in geography we have learnt models of maps, projections and so on and if you look into

the right-hand side in here these are on the right-hand side are some of the engineering

applications.

Let’s talk about electrical circuits. Now if you want to describe the electrical circuit, you can do

it in several different ways. For example you could just do a schematic diagram.

(Refer Slide Time: 20:01)

You will say this is an electrical circuit right this is this we say is an electrical circuit. This is a

schematic diagram which there is a schematic of a resistor. This is the schematic of a switch, this

is a schematic of a cell and we can use this by for solving different current voltage equations on

this in a in a physical reality, if I want to look at this then physical reality this will possibly this

resistor will possibly look something like this.

(Refer Slide Time: 21:00)

Where the words will be connected like in here the switch possibly will look like something like

this and a cell possibly is is like this. So, the schematic is different from the physical model

where you will actually put the cell. If you want to study how the signal will differ based on

time, then you will possibly look at the different kinds of time domain signals. So, this is you’ll

say this is T this is my signal f or this is a voltage v that I have at different times.

All of these are models, whether it’s a time series signal, FFT, a transistor model, we can have

static transistor model, we can have a dynamic transistor model, we can have interconnect

routing, all of these describe electrical circuits but from various different angles. So, the basic

idea of a model is that it makes use of the basic principles that we have been talking of so far.

They decompose, they abstract and they follow the hierarchy and the strongest element of a

model is abstraction.

In terms of talking about electrical circuits all the different examples that I was showing all of

them talk of electrical circuit but none of them is complete in itself. If I look at the schematic I

do not know really how does the register loop in physical terms. I do not know how does a

resistor behave if a 10-kilohertz signal sin wave signal is passed through that resistor and so on.

I have no idea of those whereas when I am looking at the fft of the signal, I have no idea of how

the inter connection on the breadboard is. So, every model looks at the limited aspect of the

system, a limited view of the system and that is what makes it manageable by the human mind to

work with and that limited view that you focus on primarily gives you the abstraction that you

are trying to look at and the terms of arri arriving at that abstraction we can decompose the

models further.

We can put them in hierarchal terms, we have often drawn electrical drawings where you will

have different subsystems drawn at different levels of details and as you go deeper into a

subsystem, you do more and more detailed models and at the top level you just have this is the

input, output of different systems. Similar examples you will find in the building and

construction industry construction engineering as well that a different drawing used, plan,

elevation side view,

Similarly, on a different model, you will have finite element models to actually checkout if a

stress would stand on its feet. so, models are common in all engineering disciplines and this is a

big advantage because we all have had a lot of experience with dealing with models of variety of

kinds may be only thing is that is that was missing is we were not repeatedly told that what we

are doing is a common activity, cross domain activity of taking concepts and modeling them,

Solving the problem in the domain of the model and bringing the result back to the real work.

That is all that we but we have been doing this in physics we have been doing this is chemistry,

certainly whole of mathematics is about that we have been doing this in geography, in electrical

engineering, in mechanical engineering everywhere. So, an every model will describe a specific

aspect of the system and this model based approach has a big advance that once we have a model

which is proven, I can build a system, a new model based on this model.

Because I know this is a proven one so this will not fail. So, the resiliency of the system will

increase.

(Refer Slide Time: 24:50)

So coupled with the approaches of decomposition, abstraction and hierarchy our next approach

in formally going forward in the object-oriented analysis and design would be to take a look into

the different object models. Here we have talked about decomposition, abstraction and hierarchy

in containing the complexity. We have seen that he product of design or models that will help us

reason about given structures make trade-offs particularly when requirements conflict.

And provide become a blueprint for implementation and we will take this forward in terms of

actually starting to build models for the complex systems based on the principles we have laid

out in the first 5 modules and our next discussion couple of module will focus on how do we

make object models and what are the practices to define them and what are the practices to

identify and extract them from a real-world system.

