
Object-Oriented Analysis and Design
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology-Kharagpur

Lecture – 52
Closing Comments

Welcome to module 40 of object oriented analysis and design. As you know this is going to be the last

module of the course. So I would not discuss about any new topic, new aspect of object-oriented

analysis and design.

(Refer Slide Time: 00:49)

Rather I will spend a little while putting some closing comments. So the objective is to review briefly

what we have done in this course and mentioned to you why you should be preparing for your

examination and beyond this course what you should be looking at.

(Refer Slide Time: 01:03)

So this forms the basic outline of the module.

(Refer Slide Time: 01:04)

So if we look back and I would take a quick review based on how the modules were organized in terms

of different weeks and moving from one week to the next. In most cases we tried to achieve something

foundational about the course, about the discussion. So we started off with what is the software

complexity all about. So we started with a very basic question of is software at all an engineering and

reasoned to come to the conclusion that we still develop software.

We are far away from actually constructing software, the way several engineers construct buildings.

But in the process so we identified some of the fundamental reasons as to why the software projects fail

and this lead us to identify four elements of complexity that really plague the software. Complexity of

the problem domain, difficulty of managing the development process, flexibility possible through

software, this appears to be an advantage and goes against the software and the problem of

characterizing behavior of discrete systems and this is the reality that will have to work with.

So we then try to look into how the complex systems are structured, what is their generic structure and

we observed looking at natural, man-made, social different kinds of system that there is a whole lot of

commonality between the structure of complex systems and that can be leveraged to really come up

with designs or come up with the design approaches which can prove to be really good in terms of

software development.

So we identified the attributes of complex systems and 5 attributes were identified hierarchic structure,

relative primitive, separation of concerns, common patterns and stable intermediate form and this lead

us to discuss about organized and disorganized complexity and as we have seen that these organized

complexity became the source of main study in the object-oriented analysis and design that the

organized complexity manifest itself in terms of decomposition and abstraction hierarchy, class and

object structure and can lead to what is known as a canonical form of a system representation.

We also recognize that there are other forms of complexity which is disorganized which is primarily

due to the limitation of the human brain and we can hardly do much about this other than doing the

organized, managing the organized complexity better. Now finally to bring an order to the chaotic

scenario of complex systems, we argued that we need to look at decomposition, abstraction and

hierarchy. These are this will be the key tools by which we can design and model the system.

So this was the basic analyzing the foundational reality of software and the reality of real-world

systems, the complex systems was a main take back from the study of software complexity and object-

oriented solutions for them in weak object.

(Refer Slide Time: 04:47)

In week2, we took a look little bit differently in terms of what is among if the software is complex if

the systems are complex then we wanted to also look at what is in terms of the computational

paradigms and object models and we look we can deep look into different programming and hardware

architecture, the generations of languages how languages have evolved, how programming paradigms

have evolved, what has been the typical topology and so on.

And along with that we introduced the foundations of object model which we have did it, we have done

it in three stages saying one part is object oriented analysis, then you have object oriented design and

finally you culminate all that into object oriented programming which were your actual software

system gets realized and in terms of been that we we could identify that there are 4 elements in a object

modeled the abstraction, the encapsulation, the modularity and the hierarchy and also there are 3minor

elements.

So these this point onward these elements have become the guiding factor of deciding on how we do

the analysis, the object oriented analysis how you actually do it, going to doing a design which is

efficient which is manageable for a complex system. So that was the primary primary aspect to discuss

in week 2.

(Refer Slide Time: 06:25)

In week 3 we moved closer to the commonly known notions of object oriented terminology, we talked

about the nature of objects and identified that an object is something that exists as a state, as behavior

and as identity and we deliberated at length in terms of what and how is an object and we extended that

for relationships among objects we showed that the objects just excising by themselves does not

provide anything interesting but they become interesting when they have links when they get

aggregated between themselves.

While objects are interesting in terms of actual programming we need a layout we need a template

through which we need to express these all these object behavior. So next was the discussion of the

nature of classes, particularly in terms of the interface and implementation. We saw that the interface is

how the objects instantiated from that class will interact with others and implementation is how

actually the object of that class come into being how actually the behavior, the state and behavior of the

object will be managed.

And both of these are pretty important to be able to finally realize the objects of an object-oriented

programming system. Relationships amongst classes give us a lot of direction in terms of how should

the modeling be done what are the different modeling possibilities that exist in terms of the real world

behavior in terms of the real world connect ivies and in this we also took a different measure of looking

into that since all of these are objects, classes all are different forms of abstraction of the real world.

Because certainly the real world was not created to with the stamp of this is this object or this is the

class, this is the relationship and so on. So when we identify such objects and classes what should be

our measure of quality of abstraction when we say that the obstruction is good when we say the

abstraction is not so good and has scope for improvement so we talked about measures of quality of

abstraction, in terms of choosing relations operations, choosing relationships and choosing

implementation?

(Refer Slide Time: 09:10)

And we then made this a tool in terms of carrying out a detailed exercise on our part to be able to show

you that how we can put all these discussion of object-oriented analysis into practice. So the basic

question that we started to address in week 4 is good that we realize that object oriented approach will

give us a much better alignment with the inherent structure of complex systems and they should be

organized in terms of objects and classes and their behaviors, relationships and so on.

But that is still leaves one basic fundamental question unanswered as to given a real world situation

how do I identify the classes, how do I identify the objects. So we talked about the basic classification

process to help the extraction of classes and we learnt about 3 basic very fundamental foundational

methodology for classification in terms of structural clusterintg, conceptual clustering, and prototoype

based classification or prototyping and we also learned about how we do key abstrfactions for

identification.

And these become effective tools at our hand to look at a real world situation at length and actually try

to extract the classes, objects relationships, hierarchies, refinements, dependencies and so on. So we

spent a major part of week 4 in trying to apply all these in the context of a running system example

which we had introduced in I think in week 1 or week 2 early in the course a leave management system

and we demonstrated with one special part of the approach which is a linguistic approach.

There could be other approaches as well primarily trying to analyze the different parts of speech of a

given English description of a system and reference to certain video based interaction between the

customer and the client we try to analyze and identify nouns, verbs, different parts of speech to lead us

to the different classes their relationships their relationships their hierarchies and so on and every time

we worked on on such a model identifying classes, objects, relationships we tried to get back to the

quality parameters that we have defined for the abstraction.

And measure as to are we really improving from the earlier model and in that process we shoed through

a series of refinements that possibly went over 3 or 4 modules that starting from a 2 page English

description we are able to come out with a significant number of classes, their hierarchies are major

attributes, their relationships and put them and and those more or less everything is has certainly the

dimensions of who is doing it, what is the expertise of the person analyzing.

But still we could identify several techniques by which more or less uniformly all these information can

be extracted.

(Refer Slide Time: 12:37)

And that was the basic objective of the week 4 which culminated the first half of this course with the

introduction of the object-oriented paradigm as a whole and culminating with certain practical

approaches to identifying objects, classes and relationships within the system. The next half of the

course covering week 5 to the week 8 has been dedicated to the other aspect of the course which is

once the information once the object-oriented components, classes, object, relationships hierarchies

have been extracted the different process have been identified.

Different use cases have become known, how do we represent them in terms of a language which is not

biased by a particular programming style, a particular platform or a particular individual a particular

process and so on and in that context we introduced what is known as a unified modeling language on

uml and we discuss we provided started with overview showed that uml did not happen in a day, it

went to a evolution of several years when different concepts.

Finally got unified in terms of a uml collection of uml diagrams which are classified as structural which

talks about basically the levels in which different part of the system exists and the behavioral diagrams

which say how the system will behave over period of time now to combine these 2, the first part where

we identified the basic object-oriented features of a system, the classes behaviors object behaviors,

relationships and so on and their expression through such a standardized language to be able to bridge

this gap.

We also took a detour into the basic sdlc process which is a software development lifecycle process. So

we wanted to say that well it is good that we have a language which is a platform agnostic, which is

process agnostic, which is people agnostic and so on and we know how to extract different object

system information from the real world through the methods that we did in the first part but when do

you do what? I the uml has several diagrams which diagram should I use at which stage of software

development? what am I?

What information should I be interested or focused on extracting at different stages? So we took a tour

in terms of the sdlc phases primarily the part of that requirements to analysis to design which is

significantly these are the 3 where OOAD is significantly involved but it spills on to the high level low

level design aspects the object-oriented programming aspects in the implementation phase, we also

talked about this, we have not considered the other phases like the actual deployment of the system or

the maintenance and the overall other lifecycle aspects or the testing phase and so on.

They also involve object oriented analysis and design but certainly in a less significant way than these

phases and with this equipped with all these, we have dedicated a significant amount of I mean more

that I think40 percent of the time of this course in actually explaining understanding the uml diagrams

and we have done that in the kind of perceived order of their importance and how widely you are

expected to use them.

So we started with the use case diagram which is certainly the most foundational which you use in the

requirements phase and you will need to use that every time you come across a system.

(Refer Slide Time: 16:54)

And then we moved on to a structural diagram the class diagram which is again possibly the most

widely used uml diagram which also leads to the direct consequence in terms of object-oriented

programming, then we moved on to sequence diagram which talks about the processes and algorithms

particularly in the temporal domain.

(Refer Slide Time: 17:18)

And continued to discuss about different behavioral diagrams in terms of the communication diagram

which is the communication diagram which talked about the special information of messages and also

we kept regular reference to what is happening in terms of the original computing model which in our

assumption has been the client-server model. We talked about the activity diagram which is the

sequencing of operations as identified from the different use cases the interaction view diagram which

is another smaller diagram.

(Refer Slide Time: 17:56)

And then finally we in the current week we ended up with the state machine diagram which is again a

very important diagram giving us lot of state related information in the system and its more powerful

than the finite state machine, it basically gives a state chat information and subsequently just in the last

module we took a quick look into some of the other uml diagrams which are also very important but in

the context of OOAD they may have less significance because they relate more closely to the

implementation phases than the analysis and design phases.

(Refer Slide Time: 18:40)

So having looked at that later if we just look back turn back and in one slide I want to summarize as to

what have we learned? I think this will be the core learning that we are looking at. Certainly the first

message we have learnt is software is complex because if you leave a side everything and anything else

it is complex because systems are complex that is an inherent panes of that. So there is no compromise

on this to the first lesson we have learned.

Second is object-oriented analysis and design helps understanding and working with complex systems.

Why? Primarily there are several reasons but primarily for 2 reasons, one is object-oriented analysis

representation design is natural, it is not a synthetic approach, it is something that you see around

happening in your real world and you adjust imbibing that in your process and that is the reason that

there is such a great alignment between the structures of complex systems as we saw.

And the different primitives that the object-oriented analysis and design have started to offer. It is

scalable that it works for a very small system a payroll system of 10 employees to a mass learning

systems if I may talk of everywhere object-oriented analysis of design work in every scale so that gives

a major reason as to why it should be used it is used in almost every kind of complex system. Second

fundamental reason is OOAD is a process, people and platform agnostic.

The whole approach does not depend on individual, does not depend on what process you want to

follow or which platform you are trying to use by platform I mean software, hardware, physical

systems everything. So OOAD it is a very very generic approach. The third take back I would say is a

uml we have learnt uml as a very powerful modeling instrument and it is powerful for several reasons.

One is it provides a language of expression that again is process, people and platform agnostic.

It does not say that you have to use C++ or java, it does not say you have to work on unix, it does not

say that you will have to use agile or waterfall or rational rise process, none of that. You could be you

could do anything in terms of all these different choices of design and exercise but you have a language

which is standardized which in many cases is executable and which certainly across both the

community will understand. Second reason that uml stands your is it aligns very perfectly its designed

very perfectly in alignment with object-oriented paradigm.

So whatever we want to say or whatever you identify in terms of object-oriented and design that can be

expressed very aptly, very suitably in terms of the primitives. So that is a great reason as to why uml is

a powerful modeling instrument. Finally it it is powerful because it can work in multiple levels of

details and multiple facets. What does that mean is there is uml when you are at the requirements phase

where you almost know nothing about the system.

So you are at a very abstract, very vague level of details. Then you slowly capture certain diagrams,

you capture use case some basic class diagram and then you start refining them. So as you keep on

refining them, you are increasing on the level of details further and further and further and you continue

to do that and uml will continue to support you and it is multifaceted because it is you talk about time,

you have sequence diagram, timing diagram, you talk about space, you have collaboration diagram.

Component diagram, you talk about object hierarchy, you have object diagram, class diagram. So you

may want to look at the system from multiple different angels and uml today tries to give you a ability

to look at a system, represent a system, expresses system from almost any angle that you feel

comfortably. So the third take back in my view is your understanding and you know ability to use uml

as a modeling instrument. Finally I would like to say that object orientation is not a tool, language or

platform. It depends actually on how one looks at the system.

I am all often faced with this question is, is it necessary to use say C++ to be able to design and

implement object-oriented system? Can I use c and do that? I often would say that yes, the question is

object-orientation is not significantly in that, will certainly the tool helps certainly the language helps

but you can still do a very good object-oriented design in a language like c which has zero object-

oriented feature provided you can look at the system in a object-oriented manner, you can look at the

system with the proper object-oriented analysis and design approaches.

So to summarize in terms of the take back this is my one line recommendation to you all is object-

orientation please keeping mind is in the mind of the developer. uml will help analysis approaches will

help the language will help, certain tools, rational lows visual paradigm, they will help but whether

how well you have actually analyzed and design a system in object-oriented terms depend on how as a

developer you think object-oriented, how any concept that you come across, how quickly you can

identify, see through and identify what is a key abstraction.

How quickly you can see that abstraction, how quickly you can see through that what is an appropriate

state, what is the appropriate set of behavior for an object, what is should be a right hierarchy of

specialization for this. The more of this you can reason out in your mind, you become a better

programmer, you become a better developer for the object-oriented paradigm and

(Refer Slide Time: 25:54)

That I would emphasize is a key take back which you should focus on as you barge into the last couple

of weeks of reading and practicing on this course to specifically prepare for your examination I will

have a very classical advise that you certainly watch the videos, revise the assignments and solution.

There is nothing new to that but certainly I would strongly advise that you practice that used and work

out examples, this example I have used very extensively all through the presentations.

And this example has often been referred to in terms of the assignment. So I would strongly advise that

you practice on these examples more and more, practice, try to do all kinds of diagram for them, try to

do all kinds of analysis for them, try to look into the systems in multiple different ways that you would

like to do in a multi-faceted manner, in multiple levels. Besides these are some of the systems for

which we will we have prepared the small system descriptions, postal management system; story

management system and a car management system.

So these are also like one and a half 2 page description. So we will soon upload this pdf files and I

would suggest that you can use them as additional examples. if you have practiced with the leave

management system watching the video, the it would be good to pick up one of the systems and try to

do the similar analysis and try to build similar models, uml models based on these sample example

systems also if you need to refer to books.

Then these are the 2 books certainly this is the most important book the Grady Booches book on

OOAD which we have been following from the beginning particularly for the first half of the course

where we discuss about different object-oriented concepts, fundamentally much of the material is

actually from this book. So it will help if you refer to this book but in addition I would suggest that if

you have questions on uml, you could also refer to the learning uml 2.0 I found this quite a nice book to

follow.

But just to say along with that there are several sites which have very good information including the

uml 2.5 diagram site which for which the URL you will find in several of our presentation slides. So

you could also pick up for the uml you could also pick up and work from that.

(Refer Slide Time: 28:21)

Finally going forward that is beyond this course if you would like to study further understand further

then certainly kind of things that you can do is can practice modeling with uml. Uml is very very vast

as we have seen; it has taken us I mean really about 15, 16 more modules to even discuss introduce you

to all these diagrams. So it will take you much longer to practice and get familiar with the nuances of

uml and how powerfully you can use that.

But certainly if you do that it will turn out to be something very good in terms of your you as a as a

developer, I would say as a developer of software systems besides that it is good when you are looking

at analysis and design it is also good to look at the possible ways to implement. So I would strongly

advise that you take also take courses in object-oriented programming these are my 3 recommendations

in the order of preference I would suggest that you do a course of OOP in C++ or in java or even

parallely on python and practice them.

Certainly there is in terms of analysis and design is nothing better than actually being hands-on. so do

analyze, design and implement moderate size systems so that you can know through your experiences

to what works and what does not work and at a second level, I would also suggest that you can consider

studying software engineering more formally which will have a significant part of object oriented

analysis and design but you can study software engineering more formally to understand and use

processes better in terms of exercising the object-oriented analysis and design practices.

(Refer Slide Time: 30:21)

So to summarize I would simply say that the course on object-oriented analysis and design is hereby

concluded. I wish you all the very best for your forthcoming examination if you are taking it and

certainly for your future endeavor with software systems analysis, design and the application of the uml

diagram as well as the different approaches of OOAD that we have discussed here.

