
Object-Oriented Analysis and Design
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology – Kharagpur

Lecture 38
Class Diagrams: Part I (Class, Property and Operation)

(Refer Slide Time: 00:26)

Welcome to module 26 of object oriented analysis and design. We have been discussing about

UML diagrams, introducing variety of diagrams. We have already discussed about the use-

case diagram at length. Next diagram we take up is the class diagram which is possibly one of

the more important diagrams in the presentation of a system.

(Refer Slide Time: 00:56)

We will, in this module start the discussion on class diagrams and this will go over to the next

two modules as well.

(Refer Slide Time: 01:07)

In this module, we just specify what is a class diagram and discuss the basic representation of

class, property and operations. We will take up examples as well.

(Refer Slide Time: 01:26)

So before we get started let us quickly recap on what is class, so we have discussed the

concept of class and objects at length, so a class represents the generic footprint or the

generic layout of objects that exist. The concrete entity that exists are objects and we have

seen that for the class like faculty, this could be the objecting stances and class as an abstract

will have different properties or attributes that define this task.

(Refer Slide Time: 02:14)

We have discussed earlier also about canonical form of complex system, where we observed

that a system could be looked at in two distinct views, one is the IS A hierarchy or

generalization specialization view which is primarily the representation of the class structure.

We have also seen that it can be looked at as a part of hierarchy which is the HAS A

relationship which represent the object structure.

Class diagram is unique in the UML representation because it provides us the mechanism to

define the part of hierarchy or the object structure and the IS A hierarchy of the class structure

together in the same diagram. So we will take a look in terms of how this is done.

(Refer Slide Time: 03:27)

I would also like to remind you that we have seen that at different phases of the software

development lifecycle or SDLC, different UML diagrams are involved and right from the

beginning that is in the requirements phase, the class diagram along with the use-case

diagram come in and start playing an important role, when you talk about class diagram at the

requirement phase it is often that the attributes and operations, the properties and operations

need not have been very clearly defined.

May not have been totally identified. It may be more that we have the abstraction, the concept

of a class that we have been able to identify and we are still looking for, not maybe we have

some of the properties and some of the operations but we may not have been able to complete

that whole thing. So here the classes are being identified as domain models because we are

trying to capture what the domain has. This is where the class diagram is supplementing the

use-case diagram.

(Refer Slide Time: 04:53)

In the next SDLC phase which is the analysis phase, we analyze the class diagrams that we

have captured earlier, tried to refine them further, continuing to represent the domain models,

represent the information that the problem domain has and build up the UML representation

of the problem along with several other behavioral models which we will discuss in

subsequent stages.

(Refer Slide Time: 05:32)

Further in the SDLC, the next phase talks about the design, called the design phase, where we

have seen that the design is further detailed in terms of high level design and low level design

and possibly at this stage we are making use of the class diagram. The class diagram belongs

here, the structural model and these are the new additional diagrams that are coming in.

Now in the design phase the class diagram is a further refinement of the domain models and

in addition you may have implementation classes. That is now, we are in the design process,

so we are in the output of this would be actual classes that we would start coding possibly in

C++ or in Java and so on. So it is likely besides the domain models we will also have specific

classes added to the design which will talk about the implementation aspect of the whole

design.

So the class diagram as we see, play a role in all these 3 phases very critical. In other phases

also it will be required. But usually the development of the class diagram will remain limited

to these few phases alone.

(Refer Slide Time: 06:57)

So given that a class diagram is an UML structural diagram. You will recall that we have

talked of structural diagram and behavioral diagrams. Class diagram talks about the basic

structure of the design system at the level of classes and interfaces. Interfaces we will talk

about more. Interfaces are like classes where we may not know the details of the properties

that are inside, but we know just the operations that we want to satisfy.

Interfaces could be generalizations of various different class concepts and so on. Besides that,

class diagrams will show the features, the constraints, the relationship, this is most important

and we have talked about variety of relationships in terms of association and generalization,

dependencies and so on and we will see how all of these in terms of the class diagram can be

presented. Typically, class diagrams are of different kinds.

Most of them are either domain model diagrams where basically I am capturing the domain

information from the problem which will significantly happen in the requirements as well as

analysis phase and the other type they are the diagrams of implementation classes which will

be added further as we moved further from the analysis phase to the design phase. So

implementation class diagrams which represent implementation classes, naturally have far

more details than the domain model class diagrams.

(Refer Slide Time: 08:45)

Now before we can start the representation of classes, let us remind ourselves that the major

features of the class include that a class has non static feature that is where the individual

instance or every object instance of a class will have these features. So these are called non

static features. We have static features where there is some characteristics, some feature may

be property of operation which is a characteristic of the class itself, not of the specific objects.

For example, if we talk of that, we have a property to define count the number of instances of

a class that we have constructed. This count will be a static feature because every object will

not have a separate count because it is just one of those object but at a class level we will

have a static count property which will keep the count of the objects that have been construct.

Accordingly, we could have operations which are also static, for example the operation which

will actually update this count when an object is constructed, will update it when an object is

distracted or when you want to know how many objects of a class exist and so on. In other

terms there are structural features or attributes and they are behavioral features or methods or

operations that will be involved in defining a class.

(Refer Slide Time: 10:30)

Now coming to the notation. A class will be typically depicted in terms of a closed rectangle

which has a solid boundary and in between that, within that boundary, the name of the class,

class must have a name and the name of the class will be written in bold letter with the first

letter in the upper case that is a basic convention, so we will not write a class like this where

the first letter is not upper case. This is the correct way of doing that.

Some classes could be abstract. If a class is abstract, if a class is abstract then it can be, we

will write within curly braces after the name of the class that it will be abstract. What it

means is this class only has a concept but in the realization we will never actually instantiate

the class and create objects. Abstract classes in an alternate form could be represented by

writing the class name in italicized font as well.

Finally, a class may have optional compartments, that is I have a class, say this is the class,

the name of the class is a book, I may have further compartments. One compartment for the

properties and the other compartment for the operations. But these are optional I may have

both of them, I may have only one of them. I may not have any further compartment at all.

(Refer Slide Time: 12:12)

Now coming to the description of properties, a property is written, so typically you can see

that, let us say this is one class, this is the class name, this is the first optional compartment

where we issued the properties and let us say we are talking about this particular property. So

what it has, certainly this is role number is a property which has a property name. So after the

property name, we put a colon to separate it from the type of the property.

So string is the type of the property. So roll number colon string says that roll number is of

type string, while it is assumed that string is something which is known already. If it is not

then that will also have to represent it. So those of you who may be familiar with C++ and

Java will relate that we keep the similar information in a C++ or a Java class but it is just that

we write them in the different order.

We first write the type name and then we write the variable name. Here we first write the

property name and then we put the type of which it belongs. So that is this part. Then it is

prefixed with a symbol which could be one of plus hash or minus, they mean the visibility of

that particular property of that particular data member. If a property is public, it is meant that

any other class can access that property directly.

If it is private it means that only the operations of that specific class can access that property

but no external class, no other class can access that property. And finally if the visibility is

protected then we have something in between this. If I have one class, say employee and if

we have another class say manager, so that they are related by on a IS A hierarchy that

manager is a employee which means that every manager satisfy all the properties of an

employee but may have some additional properties, some additional operations.

If such specialization exists then for a protected member in the base class, the derived class or

the class that specializes the base class can access this protected members. But other classes

cannot access the protected members. So protected visibility tells us a different kind of access

restriction where for a child class or for a specialization protected members are like public,

they can be accessed modified.

Whereas for any other class which is not, a specialization of this given class, the protected

members are like private. So as we define the property we also define the visibility of that

property. Then we may have an optional qualifier that follow that type name which say

certain specific things about that property. For example, here we are saying that your roll

number is, the style is to put it within curly brace and these are the different qualifiers that I

could have.

So if I say unique it means that of all the instances of this class, this particular property will

always take distinct values. In other words, I cannot have two students, we are representing

the student class, I cannot have two student objects which have the same value on the roll

number property. So several such are possible, I can make something read only. If I make

something read only, then that property can only be read, it cannot be changed, it is whatever

is set at the construction time of the object will remain as such.

A property maybe optional. If a property is optional then I can have null value for it, that is it

is not necessary to have a specific value at the time of instantiating objects. A property could

be static so that it operates only at the class level. A property could be ordered that I can say

that within different values will have to occur in a certain order and so on. So the other way

to say if a property is static is also to be able to underline that.

So if we underline that, that also means that the property is static. Now the property could

have multiplicity. This is important that it could happen, I could have number of them. For

example, here I have a subject, visibility is public, is of type subject which means that there is

some other class subject, so we are saying that this subject property is an instance of this

subject plus, but what we additionally have here is one dot dot star.

This defines the multiplicity which states that I can have one subject, I can have two subjects,

I can have arbitrary number of subjects, of course more than one. So we can specify a fixed

number here, we can specify a range like this, we can specify a range which is bounded and

so and so forth. So that is the basic sense of multiplicity.

Certainly the multiplicity by default is one, for example here nothing is written, so the

multiplicity is one. So there is only one data part property here. So if we do not say anything

it is one and of course that is a minimum value that you can have. Then some properties like

this one is written with a forward slash before the name.

So you are saying, this forward slash means that this is a derived property, which means that

this property by itself will not be stored but there will be some operation through which the

value of this property can be computed whenever I want to access it. If you try to see the

reason, we are saying this property is age. For several applications, I will need to know what

is the age of a person, age of a student.

Certainly we cannot store the age because certainly with every passing day the age is

potentially changing. So we cannot update that data. Instead what we do? We store the date of

birth and we will possibly have some method, some operation like say calculate age which

will be associated with this derive property age. So that whenever we want to access the age

property, this operation will be invoked.

This operation will consult the date of birth, consult the date that is today and based on that

compute the age and give us the value. So in terms of the view of the object we will see, as if

there is a age, but there is nothing be actually stored. So this is the concept of derived

property and we will see the use of several derived properties in the design. Moving on, the

next that we need to specify is certainly operations or methods.

So they written in this form, say every method has a name and the fact that it is a method is

shown by having a pair of parenthesis after that. It is separated by colon from the return type.

So this says, this will, get certificate is a method in student and it will return certificate.

Record attendance is a method, is an operation and it will return a bool. So again you can see

that compared to the common object oriented programming languages like C++ or java, the

style here of expression is little different.

We first write the method name and then we specify the return type and the return type itself

is optional. So I may have a method which does not have a return type, which basically

means that it is not expected to return any value. So if you think in terms of C++ then it’s

return type would be coded as void. Methods have similarly different visibilities and the

visibility notation is same as of the attribute.

So they could be public, protected or private. Methods can be qualified by different qualifiers,

like we are saying get certificate as a method is qualified by unique and ordered which means

that this method will produce results which are a number of certificates. You can see the

multiplicities star which means any number of certificates, zero or more. But what it says is

that it is unique.

So if it returns a list of three certificates then these 3 certificates will have to be unique. They

are ordered. So there is some ordering between them. For example, the ordering could be the

level of education for which the certificate is provided, the 10th standard certificate, the 12th

standard certificate, the graduate, the under graduation certificate and so on. And these are the

various different types of qualifiers are possible, ordered, unique, abstract, sequential,

guarded, concurrent.

These sequential, concurrent, these are qualifiers to take care of concurrency in the system, so

that there are situations where a particular operation maybe invoked by more than one object

at a time. So if you say that a method is concurrent then it is possible to invoke it by multiple

objects at the same time. But if you say it is sequential, then it necessarily means that you will

have to do one and then you can do the next.

It could be guarded, operation could be guarded where in it means that the operation has a

precondition, that is I can invoke this operation from an object provided certain guard

condition is satisfied. So these are the typical ways to denote the operations or methods of a

class.

(Refer Slide Time: 24:26)

So if we just refer to our LMS example. So LMS as we have seen have two major abstract

classes employee and leave. There is specialization which we have seen earlier. We are not

talking about that. We are just talking about the abstract classes, so there could be several

properties of employee name, employee ID, gender, salary, the date of joining and so on and

there would also be several operations like recording attendance, cancelling leave, requesting

leave and do on.

And we have seen how this work, how this can be extracted and here we are just making a

representation for that. I would draw your attendance for this. For example, for leave we will

have something called, Is Valid. So if Is Valid is true then that leave can be processed. If it is

false, then that leave cannot be processed. Naturally we do not expect that while the leave is

created, somebody is entering a value for its value.

But this will relate to some operations say validate leave which can have the result of a

Boolean which will be set when I try to access this Is Valid property. Therefore, you can see

this slash here which say that Is Valid is a derived property of the class.

(Refer Slide Time: 26:06)

I have also included here a couple of other examples which we can just take a look at, for

example here is a library domain model, that is this is trying to capture the information of a

library. So there is a book class which has all this different properties of the name of the

book, the subject of the book, the publisher of the book, the ISBN number of the book and so

on. There is another class book item.

So the difference between book and book item is, so when I say that we are going to follow

the object oriented analysis and design by Graham Gooch (()) (26:53) then we are talking

about a book. But then when I study, I need a specific book that I own. When you study you

will have specific copy of Gooch’s book that you own. So among, if 5 of us have 5 copies of

Gooch’s book, all of them will be represented by the same instance of the book class. But

each one of these copies are distinct.

So there will be some more information like say barcode which will report on each copy to

distinguish one copy from the other. There could be RFID tag and so on. And since this book

items specific items can be loan from the library, so there will be some derived attributes like

loan period, like due date.

So you do not specify the due date but what you keep is possibly the date on which the book

has been issued and you keep information in terms of what is the issue period that the library

allows, based on that whenever I try to access due date there will be some method which will

compute the due date property and give me that date. Similarly, there could be, so these are

all different derived properties that we have.

You can see that this is in a sense that little bit simplified model because we are talking about

the domain, for example it is not showing the visibility specification for this different

attributes because that will get decided based on getting all the different classes together and

when we go towards actual implementation then we can decide as to what are the properties

that we want to hide, what are the properties that should be publically available and so on.

But here since we are just capturing from the domain we have not yet done that exercise, so

you do not see the visibility specification symbols. So similarly there are several other classes

like, class defining an author which is a name biography, birth date of the author. The library

itself is a class which has a name and an address whether it is the national library situated at

Calcutta which is a central library of IIT, Kharagpur and so on.

So if there could be library instances coming in here, there could be librarian is another class

which has different attributes and so on. So in this way you can see a whole lot of classes that

are captured from the library domain to represent the, to build up, start building up the class

diagram. You also of course see lot of other symbols and some of which we have casually

talked of while we introduced different concepts, but we will come to discussing those, once

we have actually talked of the relationships.

(Refer Slide Time: 30:04)

Finally, it is the same library domain model. The only thing that is provided here, that in

addition to the actual model you have lot of annotations given, so these annotations, this will

basically help you prepare for your understanding, so that it specifies that this is an abstract

class and you can see, how do you know this is an abstract class because you know that it is

written in a italicized form.

So these are different attributes as marked here and rest of the stuff you have not done yet. So

you can study this and understand and get familiar with the way the classes can be

represented in the class diagram.

(Refer Slide Time: 30:56)

To conclude we have introduced the class diagram. We have shown the representation of

properties and operations in a class and we have shown a couple of examples. In the next

module, actually in the next two modules, we will talk about different relationship amongst

classes that we had studied earlier, how to represent them in the class diagram.

