
Object-Oriented Analysis and Design
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology – Kharagpur

Lecture – 36
Use-Case Diagrams: Part II

Welcome to module 24 of Object Oriented Analysis and Design. From the last module we have

started discussing about different UML diagrams; specifically, we have been talking about Use-

Case diagrams and we will continue on that.

(Refer Slide Time: 00:44)

In the Use-Case diagram we have seen that there are few components that define the diagram the

actor, actors in the Use-Case diagram are responsible for starting Use-Case actions or can be

responding to some Use-Cases as passive actors. We have seen different classification of actors.

The second component are Use-Cases which are well-defined perceived functionalities of the

system that we want to put in the place.

So these are the actions that the actors initiate every Use-Case is described by a name and we

have seen that in the specification of the Use-Case we can state its purpose pre-condition, post

condition, failure condition, optimal or most expected flow and so on. In this module, we will

discuss about relationships among Use-Cases.

(Refer Slide Time: 02:04)

There are typically-- there are three major relationships that exist between Use-Cases; this is

given in this outline which will also be available on the left hand side of every slide.

(Refer Slide Time: 02:13)

So the relationship among Use-Cases there could be various kinds. When you talk about

relationship it is basically a dependency between two Use-Cases. So a relationship is I have a

Use-Case here have another Use-Case here and I am putting some kind of a dependency between

these Use-Cases and that dependency is known as relationship. Defining the relationship

between the Use-Cases is usually a decision that the person modeling the system would take.

So analyzing the specification looking at different conditions that may exists between these

actions, we will identify different relationships. Here we will talk about three relationships the

include relationship; the extend relationship; and the generalization relationship.

(Refer Slide Time: 03:18)

So we will start with the <<include>> relationship. The <<include>> relationship involves one

Use-Case that involves another Use-Case that includes another Use-Case. So the <<include>>

relationship basically explores the issue of reuse. So if you just draw a parallel with the common

programming paradigm then <<include>> relationship is kind of one function calling another.

So when we want to perform some action say main function wants to perform some action and

that includes printing certain values then main would not be directly printing it rather main will

call a constant Printf, to take care of the actual printing process. So if main is one Use-Case, then

Printf would be other Use-Case so that is a typical programmatic view but in general we will say

whenever we have a Use-Case A and to complete its own functionality.

It might need another Use-Case B then we will write it like this A <<include>> B. So you should

note the direction of this relationship A is the base Use-Case which needs B, B is the included

Use-Case which we will assume a self-contained. Of course in turn B may include other Use-

Cases that is quite possible. So the direction of the arrow would be from A to B and the style of

the arrow would be dashed.

And to make it explicit that it is an <<include>> relationship we will use a (()) (05:07) and say

that is an <<include>>, so this is the way we write it. So that would mean that the behavior of B

is included in the behavior of A because while the Use-Case A is executing at certain point it will

invoke B and complete that and the included Use-Case B is necessary to ensure the functionality

of the base case.

So without B, I cannot complete the functionality of A and this is the basic notion of

<<include>> relationship.

(Refer Slide Time: 05:35)

So for example if we have a calendar kind of application were there are different appointments

that I can insert, create. Now certainly we will expect that once appointment has been created

then there will be notification given to the participation. So one Use-Case-- I am sorry, one Use-

Case is the Insert Appointment, the other Use-Case is Notify Participant and there is a

<<include>> relationship from the Insert.

So Insert Appointment is the base case and Notify Participant is the included Use-Case in. Now

we may note that like in functions which can be called from multiple functions the Notify

Participant this Use-Case Notify Participant maybe included in other Use-Cases. For example, if

I later or somewhere, I have another Use-Case Cancel Appointment then certainly when the

appointment will canceled the participant need to be told.

So Notify Participant would also be included in the Cancel Appointment Use-Case.

(Refer Slide Time: 06:51)

Talking about ongoing LMS system we have-- for a leave we need to run a validation to check

whether a particular leave is valid one. And we say that Use-Case is validate leave which have all

the actions performed to validate a leave. When the <<include>> use—this will be included

whenever doing a Request Leave. So when an employee requesting for a leave certainly before

the request a leave can be created.

We need to valid that the tentative leave record is a valid one, so request leave is a base case and

validate leave is an included case that will get included. Certainly validate leave can be included

also in other Use-Cases like approve leave. When the lead goes onto approve a leave naturally

the -- it will need to be checked that the leave being approved is a valid one and that the

conditions that the lead may have imposed on the leave.

(Refer Slide Time: 07:57)

The second relationship between Use-Case is known as a <<extend>> relationship. <<Extend>>

relationship is a kind of an option adding an optional behavior among the Use-Cases. So it can be

used to add some optional behavior to what has already been defined for a Use-Case. Now when

you want to add this optional behavior; now this optional behavior means that it could actually

depend of certain conditions.

So you can also say it is a conditional Use-Case. So the condition is represented in terms of

Extension Points. So say if you reach the specific extension point then you invoke the extended

Use-Case.

(Refer Slide Time: 08:51)

So if we say, we have a base use case A as an here; we have an extending use case B as an here

and in this case both A and B are self-contained unlike in <<include>> where B was self-

contained but A the base case was partial because it need B always—here that is not the case

because this is the case of optional or conditional invocation. But A controls if B should be

executed or not, that is a conditional one that is the optional one.

So these are the couple of points we can note the behavior of B may be included maybe

incorporated into A provided it is invoked so extending the Use-Case B is optional that is it

maybe but it need not always be activated by A. And there are Extension Points that specify the

location in Use-Case A where the extending Use-Case will be used. So there is a-- the condition

under which this is incorporated the condition is actually given by the Extension Point.

Now some more details will include that more than one extension point can be specified for each

Use-Case. There could be multiple different conditions under which the same Use-Cases

execute. The names of extension point must be of unique of course otherwise we will not be able

to identify them. And certainly since one Use-Case maybe-- may extend multiple extension

points it is quite possible that the number and names of extension points and the number of

extended Use-Cases may not be one to one, there could be multiplicity of relationship.

(Refer Slide Time: 10:51)

So as an example say your savings bank account provide bonus if the deposited fund is above

20,000 or the depositor’s age is above 60 years either that depositor was a senior citizen or their

fund values more than 20,000 then a bonus is provided. And if the Use-Case for providing the

bonus is calculated bonus and the Use-Case of actually computing the fund is deposited fund

amount then we can have an extension point which incorporates these two conditions.

The senior citizenship condition as an here and the fund level condition as an here and you find

those in the diagram. Let me just clean up and show you again. This is the extension point and

the deposited fund amount is a base case and this is the extended case that will get invoked at

this extension point; that is the basic idea of extended relationship.

(Refer Slide Time: 11:58)

So in LMS, we know that there are certain types of leave; we have seen certain different types of

leave which can be approved provided there is a certain condition that will satisfy, for example

for a maternity leave certainly the certification is required that the employee in question already

has the medical condition of pregnancy or for a sick leave we need the certification that the

person was sick and doctor has checked and so on.

Similarly, for a parental leave we will need birth certificate of the baby that has been born to the

required-- the associated employee. So let us try to put that behavior of as a Check Report which

we may want to incorporate into the Approve Leave which means if the leave has to approve a

particular leave which is of either these are-- you remember the leave types the ML, ML is

Maternity, SL is Sick Leave, and PL is a Parental leave, if any of these leave has to be approved

then for those leave we will need to check for this.

And certainly for the maternity and sick it is kind of medical report, so I can have-- we can

model the extended the Use-Case which is Check Medical Report which has to do all the

necessary tasks for actually checking out the validity and authenticity of the medical report and

so on. Whereas for Parental leave we need to check some corporation documents, municipality

document regarding the birth of the baby having taken place.

So that is another Use-Case check birth report. So we can model this by having an extension

point or having actually multiple extension points I should have marked them here in the

Approve leave Use-Case. One extension point is Maternity Leave, Sick Leave. So in terms of

Approve leave if the condition is that you have a situation of Maternity or Sickness then the

corresponding check medical report is Use-Case has to be invoked.

So that is designated by this arrow so here also note that the direction of the arrow is from the

extend Use-Case to the base use case. And on that again we put the (()) (14:48) <<extend>> to

mark that it is an <<extend>> relationship. On top we put the condition of extension which is

extension point name, so the name of the extension point is Maternity Leave, Sick Leave so that

name has to be match here Maternity Leave, Sick Leave.

And then below that we try to mark what is the action that this extension will take which in this

case verification of medical certificate. So for example for the other extension point this are the

other extension point where we have Parental leave so the extend relationship will show what is

a Parental leave condition on which this checkbox report to be done and here we specify is to

what is action that this will take.

So extension often is a very convenient way to relate different conditional Use-Cases to one or

more base Use-Case, it is possible that some extended Use-Case may be associated with multiple

different extension points in different base Use-Cases as well. For example, checking medical

report here is happening in terms of approval it may need to be also invoked in case of say

revoking a leave, you may really need to check on the report to actually decide whether the

revocation can at all be permitted in the system or not.

(Refer Slide Time: 16:31)

So this was the second kind of relationship. The third kind of relationship that may exist between

Use-Cases is the Generalization relationship. The concept of generalization and you must have

experienced by now that this basic concept of generalization specialization or hierarchy is

repeatedly occurring in the scenarios. So it works in the same way as does with classes. So there

is a base case A; there is a sub use case. Here is use the terminology sub use case B.

So base case A is self-contained, that it has a within that it needs for the invocation. But the sub

case B needs A because what it does as in class associated generalization specialization or

inheritance the sub use case inherits-- this inherits all the functionalities of the base case A. And

after inheritance-- so this is similar so it inherits the sub use case inherits the behavior of A, the

base case but it is allowed to override and extend it.

Override means that once Use-Case has been inherited it has different behavior it has different

possible operations that the Use-Case may invoke. The sub case B make use these operations as

it is from A or it may want to redefine the behavior of the operation. If it redefines the behavior

of the operation this basically means redefine then we say it has overridden the particular

operation from the base use case. Or it may want to extend it which means that it will first

execute the operation as in the base use case and then it will add something more.

So the possibility is as it is that is just inherit, override that is use the same name of the operation

but have a different functionality or extend that is first use what you have inherited and then do

something more, these are all the possibilities. So in overall the B inherits all the relations of A,

the whole functionality of A. And in this context it is possible that we can have some Use-Case

which is abstract.

So if a Use-Case is abstract will normally write within the Use-Case that this is an abstract Use-

Case. What is the meaning of the abstract Use-Case is that this is a scenario of action which will

never take place in the real-world but this is being put in place more for the modeling purpose to

unify a number of different possible Use-Cases that can happen. And like in abstract classes this

is also a regular functionality of Use-Case.

(Refer Slide Time: 20:16)

So as an example let us say I have an authentication system. So I have Use-Cases for

authentication which does variety of authentication like password base authentication maybe

SMS, OTP based authentication and so on. And I want to define another Use-Case authentication

by fingerprint which specializes from the authentication use case. So what is does, it inherits all

the different algorithms and operations that the authentication Use-Case has.

But, in addition, it will include some fingerprint matching strategies in the authentication in this

Use-Case and that is how the authentication Use-Case will get a specialized in the authentication

by fingerprint.

(Refer Slide Time: 21:09)

Talking about LMS example if we think of a Use-Case to export executive leave and another

Use-Case as exporting manger leave then we will have again a generalization, specialization

relation, so this being the base. If I want to export the manager leave certainly I will do

everything that is required for exporting the leave of an executive which is the base case. But in

addition, I will need to possibly do some more export of the data in terms of the different

employees who report to this manager and their availability during the leave of the manager.

So this will typically have then when I extend I inherit all the functionalities of the export

executive leave Use-Case and then execute them and do something more on top of that. In LMS

we could also think of abstract Use-Case for example we can say that we have different Use-

Cases like ‘Request’ is a Use-Case then ‘Approve’ is a Use-Case then ‘Avail’ is the Use-Case and

so on.

Again say that Use-Case ‘Act on Leave’ which is an abstract. And we can say these are these

basically are all specialization of this particular ‘Act on Leave’ Use-Case. So what is the ‘Act on

Leave’ Use-Case specifically, it is some action on the leave so this will have the basic

functionality of checking out on the leave record maintaining in the leave store and so on which

is something which all of these leave Use-Cases will need for its own invocation for its own

implementation.

So instead of that all those leave store management related stuff being implemented as a part of

all of these specific Use-Case we can club them together and conceive of an abstract Use-Case

‘Acting on Leave. Now is this abstract? Because by itself just the functionality of the leave being

maintained on the leave database, leave records that being accounted and so on just by itself is

not a stated functionality or a perceive functionality if we look into the leave management

system.

So- but this will come out through the discussion and analysis of the LMS specification that such

abstraction could actually help the system get organized in a better manner.

(Refer Slide Time: 24:12)

Besides the relationship amongst the Use-Case there could be some more relationship like there

could be a generalization relationship between actors. That is we can think that actors like an

executive the example is a best way to look at executive is an actor lead is an actor and we have

already in terms of identifying classes we observe this that lead as a employee can do anything

that executive as an employee can do but lead can do something more.

So again have a base so this is the base actor and this is the sub-actor or the specialized actor

who inherits all the functions of what the executive actor and do but lead actor can do something

more and in turn that could be generalized-- specialized fact in terms of the manager actor. So

what happens is often this is very useful as we will see that if we have two actors one is here and

one is here and suppose we have four different Use-Cases, and this actor can use this two and

this actor can use say this four instead.

So basically it means that say the actor A1 and actor A2, A2 can do anything that A1 can do then

it maybe more explicit to model this separately that I say this is A1 this is A2 and there is a

specialization of A2 from A1 and of the different Use-Cases I will associate these two with A1

and only these two A2.

I actually do not draw this association because since A2 is a A1 it is implicit that all these Use-

Cases will also be associated with A2 that often simplifies the (()) (26:28) and simplifies a model

much better and give a clarity in terms of the Use-Case diagram.

(Refer Slide Time: 26:36)

So to summarize this module here we have for continued to our discussion on the Use-Case

diagram and in addition to the actors and Use-Cases we have now seen that there could be

relationships between Use-Cases and in specific we have talked about <<include>>, <<extend>>

and Generalization relationship between Use-Cases. And we have also says examples so of the

LMS system.

We will continue this discussion in the next module as well were we will try to explore and

consolidate the Use-Case diagram for the LMS system.

