
Object-Oriented Analysis and Design
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology-Kharagpur

Lecture – 35
Use-Case Diagrams Part I

Welcome to module 23 of object oriented analysis and design. We have already in the last 2 modules,

taken a look at the basic premises of uml, the unified modeling language. We have discussed very

briefly though the stages of software development lifecycle and related both of them together.

(Refer Slide Time: 00:54)

Now from this module onwards and this journey will continue for several modules to come. We will

start discussing and explaining about different specific uml diagrams. So, in this module we start the

discussion on use case diagram and we will continue that in the next module as well.

(Refer Slide Time: 01:20)

So, in terms of our discussion we will discuss use case diagrams and specifically actors and use cases,

the outline will be available on the left always.

(Refer Slide Time: 01:29)

So just to remind what are the use cases? Is a integration of business knowledge with the development

specification is a requirement? That is that is the basic starting point. So that is how we got the 2 pages

on the leave management system where the organization decided to have a system of lms and they put

it down, integrated the business knowledge which is how they how the employees report, how the

employees apply for leave, what different kinds of leave they have and so on and created this

requirement.

Now we still do not know who will interact with these modules and for what purpose. What user will

do with this is as still not clear, certainly these are not so well specified. In fact, the lms specification is

actually not that bad because if you back to the specification you will find the use of the word use

cases. But usually you will not get that. So, the use case diagram depicts a human interaction with the

system that is this is my system that am trying to build.

This is my system and finally why am in building the system because there is some human who wants

to interact with the system, give input, take output and so on. And this is this human is not a not a

single individual, this human could be a various different group of users who would use and different

parts of the system for different purposes. Certainly, in any reasonable system, no 2 users would be

using the system exactly in the same way or may be at least there would be variety of groups which

will use the system in multiple different ways and the different ways in which the system can be used is

the main premise of the use case diagram.

(Refer Slide Time: 03:40)

So, it is a behavioral diagram as we already said and it is used to define a set of actions, use case would

mean it is a particular case of use or cases of action that we are interested to look at and who takes an

action, if an action who will take that action, an action will be taken by the actor. So, the use case

diagrams are mainly used to gather requirements of the system and identify internal and external

factors. Now before wasting more time let’s get into the actual details.

(Refer Slide Time: 04:21)

A use case diagram is composed of 3 major components, the actors, the use cases and the relationships.

In simple terms, the actor is a user, in a simplistic term the actor is a user who wants to do something

with the systems, use case is an action is an activity, or is a way that the user would like to use the

system and finally relationship is no action that the user would want to execute would be all realizable

alone by itself, different activities have different dependents.

If I want to take a leave then it depends on what is my availability of leave, what is the validity

constraints on the leave, what is the opinion of my reporting manager and so on. So, a relationship is

most important to understand what how the actions will interact.

(Refer Slide Time: 05:25)

So, the uml diagrams gives various different notations and semantics for defining these components.

First the actor. As already explained actors interface with the system. Actor though the name sounds as

if actor is a human being but uml considers actors who are people or human beings or actors who are

other systems that is I can get a request from a human being sitting on the terminal working through a

gui or I can get a input, I can get a request for service from some other system also. Actors could be

non-human.

These are typically shown in terms of typically shown in terms of stick diagrams figures like this. Or

they could be level by guillemets also I mean instead of the figure I could just put guillemet is this pair

of symbols. We put a name within that and that means an actor.

(Refer Slide Time: 06:39)

There could be variety of different actors or or rather the actors can be classified in multiple different

ways. For example, the first-class verification I have already talked of, an actor could be human or non-

human. An actor could be primary or secondary, the primary user is kind of who is a targeted end user

of the system so in the leave management system, an employee or executive is a primary user. And a

secondary user is someone who is required for the correct functionality of the system.

So, system administrator who has to make sure that the proper leaves are credited the leave, records are

reconciled and all that is considered to be a secondary user. Then users could be active or passive.

Active users are those who initiate a use case and passive users are those who are recipients of the use

cases. So, an active user starts applying for a leave, a passive user is like a ehm actor is like a printer

who based on a request to print a report would actually print the report.

(Refer Slide Time: 07:50)

So, the question again is how can we identify the actors. So, we use a essential use cases who needs the

system support who is responsible for system administration, what are the external devices, software

systems to communicate with, who are interested in the result of the system and so on. These are the

questions you can keep on asking and answers for those will give you the actors.

(Refer Slide Time: 08:24)

And extending on our earlier approach of analysis to identify objects and classes, I could easily

conclude that certainly an actor will be one who is an identifiable class, identifiable object. So, if we

refer back to our linguistic analysis of nouns that could give us some good clue in terms of what the

actors could be, so we look in here all around and try to find out you know nouns like employee,

manager, lead, sysadmin and so on which could initiate some action in the system.

The employee initiates the request, lead initiates a approval process or a revocation process, sysadmin

initiates the leave crediting process and so on. So, you can very well understand that there is there is no

very standard mechanism for identifying actors but again the linguistic analysis of noun will give you

some good clue and then clubbed with that if you do some you know action analysis based on the

works you will be able to get a better confidence as to what, who are the people who would need to act

on the system and must be actors in the uml diagram.

(Refer Slide Time: 09:49)

So, this is the lms example which I have already discussed. So, these are the 2 different ways so typi

typically you use a this kind of a icon when you know that the actor is a human and you use this kind of

an icon when you know that the actor is a non-human. So, these are the actors in the LMS system that

you can easily see.

(Refer Slide Time: 10:16)

Now the next component of use cases diagram and certainly the most important component is the use

case itself, that is a use case represents what the actor want the system to do, the required action. So, if

an executive is an actor, executive wants to apply for leave. The lead needs to review and accept,

approve the leave. So, these are what the actors want the system to do. So, we just do not end by

identifying this action is required but you say that a use cases has to give us a complete picture,

complete course of events.

For example, if if an executive is applying for a leave, then it’s just not applying for a leave, it’s the

whole course of actions have to happen, you must have a reason for the leave, you must have a enough

account balance for that leave, it must block those dates, it must calculate how many days it turns out to

be, it may have salary implications and so on. So that complete course of actions from the use case for

a particular action. In addition, use cases that that diagrams as you say, but they could have some

attached nodes, short nodes to describe what the use case is talking about and what the conditions is

and so on.

You would I would like to remind you at this stage that use case is a diagram to be used at the very

beginning of the whole activity. So, you are using use case at the requirements phase so when you are

working on the use case you do not have any of the other uml diagrams possibly at hand. So, all that

you are relying on is your classical natural language descriptions and discussions and so on. So, in one

step you may not be able to put everything concretely in terms of the required graphical notation of the

uml.

So, you may still need to have some further details, even some some details may not be representable in

use case diagram. So those are the things you keep putting down in terms of the notes and attach them

with different parts of the use case diagram.

(Refer Slide Time: 12:40)

To identify use cases again I would refer you back to the linguistic analysis of verbs and we can see

that the employee needs to approve o I mean a lead or manager needs to approve a leave, regret a leave

or revoke a leave, an employee can cancel a leave and so on, can avail a leave. So, these are different

actions that are expected in the system and therefore they will very legitimately qualify a candidate to

be considered for different use cases.

(Refer Slide Time: 13:23)

So very explicitly these are some of the request leave, daily attendance are some of the use cases, the

use case is typically drawn in a kind of a oval shape and with the use case name written here. So, this is

the shape and this is the name of the use case. So, this is the minimum that the use case must have. It

may have other annotations, other ornamentations along with it but it must at least basic have a closed

oval elliptic shape and a name to being identified as a use case.

(Refer Slide Time: 14:07)

You remember I have started saying that uml is grossly a graphical language, so everything every

concept, every primitive we talk of there is a iconic representation for that. So along with certain

textual annotations its primarily this iconic primitive which will tell us what’s exactly being represented

and going on in the system. Now a use case may be specified in the in the following manner that is this

is kind of a possible way that you can specify a use case.

So again, we are at a very early stage of design so we do not have much of the details codified in the

uml diagrams. So, in terms of a use case, at least the first thing naturally is obviously required then

name of the use case, you must give it a name. it is good that in the notes that if you put what is the

purpose of this use case so that will clarify as to why this use case is important or how this use case

could later stage be found to relate to other use cases and so on.

The next one is very important is it says that many of the use cases have a precondition that you can do

something provided certain conditions have met in the system. Of course, in terms of the system this is

a very trivial pre-condition that the login and password signing in is required to enter the system. But

you can get a whole lot of pre-conditions in the LMS system that for example to be able to avail of a

sick leave. for the basic approval for the or for the application I do not need a certificate but when it

needs to be finally reconciled I need a certificate.

So, this reconciliation need as a pre-condition of a certificate. The post condition is what happens when

a request has been entered am sorry when a use case has actually executed has performed and after that

what has to happen. For example, you have applied for leave, the leave is approved, once the leave is

approved it has to get temporarily locked in your system to show that you have less number of leaves

now. Now when you avail on the termination of avail of the leave it must get actually deducted from

your leave.

So, the post condition of having availed is that the your leave permanently go down by the number of

days you have taken leave. The post condition of approval is it is provisionally locked to a lower

number by the number of leave days that you have been that you have got approved. Because at this

stage at the approve stage if the leave is revoked by your approving manager or you cancel the leave,

then it will again the post condition would be that it should get unlocked and go back, should get

credited back to your leave records.

Often, it’s a good idea to also document in the specification that the failure conditions, what happens if

the pre-condition is not satisfied or if the use case fails to execute successfully. So, what should be the

what should happen in those cases must also be documented. For example, the user has an employee

has tried to apply for a leave, balance in the account of the employee satisfy but in terms of the

clubabililty condition, the leave was not a valid one. 2 leaves were being asked for together, (()) (18:12)

together which are not which cannot be taken together.

So, in that failure condition we need to specify as to what happens to the apply leave use case. Trivial

to say that actors need to identify as to who all possibly can work with this use case and often people

would also like to put a optimistic flow. Optimistic flow is not a fixed flow I mean is not that, this is not

will happen but it’s kind of we are designing the systems we are designing the system with a purpose so

the optimistic flow say that if everything else go right then this is what we would want the use case to

do.

So, these are some of the possible optimistic flow for the request use case we are looking at. So, it’s

often good to document the optimistic flow because when it later on this use case will go to the analysis

phase, the design phase and finally and finally the you know the low-level design will get detailed out,

it will help the designer to understand that this is typically what the system will be used for.

So, the designer at this stage could make recommendations to the test system later on that put a lot of

emphasis on these cases because these are the cases in which the user would normally use and test the

system. Whereas failure conditions are important to also design tests to decide as to if the system will

work in the corner situations. These are the typical these are typical structure of a specification of a use

case.

It is not necessary that all of these of course the name is necessary but many of these may be missing in

a specification but certainly as much of that can be put in the specification of the use case certainly

help.

(Refer Slide Time: 20:18)

So, to summarize on this module, we have started discussing the first uml diagram, the use case

diagram which we know is to be used for the requirement specification stage of the SDLC process and

in the use case diagram we have talked about the 2 primary components of actor and use case. In the

following module, we will continue our discussion on the use case diagram and talk about the

relationships that exist between different use cases.

