
Object-Oriented Analysis and Design
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology - Kharagpur

Lecture - 33
Overview of UML

Welcome to module 21 of Object Oriented Analysis and Design in the last couple of modules, we

have discussed and actually worked out an exercise with a Leave Management System to

illustrate how different linguistic and important analysis techniques can be engaged to extract the

classes the key abstractions their relationships and so on.

In this context we can go further and that is our endeavor to do so but before we proceed further

on extracting more and more system information from the specification and start modelling them

for proper design we need a vehicle to express the information that we are extracting, naturally

we are our starting point has been certain English documents interaction videos and it could be

other supporting documents images charts and so on.

But as we extract the information and start creating the analytical design of the system we need a

language which can be used very compact way and very concretely to express all the information

that we are extracting. UML or Unified Modelling Language is such a vehicle so in the module

today and in several modules that are to follow this.

And in the next couple of weeks we will take a deep look into what is UML, how UML is

represented and as we work through different representations of system concepts designs

parameters into the UML we will illustrate as an ongoing process as to how we can use that

Leave Management System and create its Unified Modelling Language models so with that a

broad objective we will start this module by discussing it basic overview of UML.

(Refer Slide Time: 03:17)

This is what we intend to discuss and as usual this outline would be available to the left of every

slide as we go through the presentation.

(Refer Slide Time: 03:27)

So the first question certainly is why do you need something like UML, as we have seen that so

far there are two kinds of descriptors that we have for a complex system on one side on one

extreme is a descriptor which specifies the requirements of the system specifies different

behaviour and entities of the system and typically as we have observed it is written in a natural

language.

And as we have repeatedly explained there could be supporting information discussions, notes,

images and all that the key difficulty in this form of representation of a system is natural

language is often ambiguous vague imprecise from the same text what I understand what you

understand and what someone else will understand would vary widely the diagrams help and yet

they could be drawn with different conventions with different practices.

So this way of representing a system is not a uniquely method by which we can unambiguously

precisely understand what the system is all about, the extreme of representing a system is its

implementation when the system is gets implemented in terms of possibly a Object Oriented

Language so if we intend to use C++ or Java are some such, then we will have the whole system

again described represented in terms of a set of classes methods exception conditions

dependencies modules of sub systems messages threads and on so forth.

Again another description which is very specific and would vary across different platforms

different languages different paradigms and so on, the our intention our requirement in the whole

process of OOAD is to start with a requirement specification of a system and reach the

implementation software implementation of the system both of them we find a difficult complex

to handle they are not very clear precise in the expression.

So that brings in the context of using something like a UML or Unified Modelling Language

which is basically a notation for system analysis and design the first importance of why should

you use UML it is a standard it is an International standard maintained by the object modelling

group or OMG.

So it helps the designer developer even the user to capture various artifacts of software design

various inventions details of software design can be uniquely captured in UML without any

scope for imprecision vagueness ambiguity or the viewer or reader dependent understanding so it

eliminates the issues of consistencies and accuracy that typically will exist in a software analysis

and design problem it minimizes vagueness and imprecision.

As I mentioned and coupled with all these it facilitates a robust communication with within

teams robust communication between the vendor and the client and so on, so the basic process

would be that the initial stages of our design and analysis we will try to interpret the specification

from different multiple natural language and multimedia sources and create this UML diagrams

which will be the unique representation and kind of the golden on which the whole system will

then be built up.

(Refer Slide Time: 08:01)

So what is UML, UML has can we look at in various dimensions first of all its an expressive

modelling language it is a language to model its set to be a expressive language because it is

allows you to model almost anything that you need to model starting from specification, to

construction, to visualization, to documentation everything that you need in the whole life cycle

of a software development system implementation development can be captured in the UML.

For the need of clarity expressiveness and precision UML is almost totally designed as a

graphical language so it is not which depends either on the vague semantics of natural language

nor does it deal with the complex logic and analysis of the programming languages it is a

graphical pictorial kind of language and it allows us to use a whole lot of ready-to-use core

concepts.

You recall from the earlier discussion that we had talked about reuse we're talked about common

patterns that occur frequently in complex systems that occur across domains and so on, so what

UML has done UML has tried to create semantic expressions for those concepts and met them

available in the language itself so that very often once you come across such a concept in the

system you are going to represent you would simply be able to find a primitive find a feature in

the UML which directly represents that.

Besides that, UML provides a formal basis may be for some of you it may be difficult to

understand what a formal basis means what it means is though it is a graphical language it should

not be just taken as a pictorial representation it has certain strong mathematical foundation which

can be proved to always provide a consistent correct description of the system alone, and in that

process it uses certain meta-model it uses a semantics which is the part of the official UML

standard documentation.

In addition in the supportive side it supports high level development concepts will often find

UML talking about terms and items which can be directly represented and immediately

implemented in an standard OOP language like C++ some of those UML concepts a supported

concepts will actually have given standard library implementation in some of the common OOP

languages this kind of collaborations patterns these are the some of the terms that I have

mentioned here patterns and components would be very convenient to represent in UML.

Last but not the least is UML inculcate a set of best practices if you refer back to the very first

module where we started discussing as to what at the challenges of constructing a software we

address that there are different issues and maturity issues and so on, for which we still set the fact

software is developed but all other kinds of engineering development is actually called

construction whether there is a guarantee of success.

We had mentioned that all these other fields of engineering succeed so well are so reliable these

days because of the years and years of practice we have been able to develop a set of norms set

of industry standards and best practices which every civil engineering design or a mechanical

machine design has to follow.

Similar practices still do not exist that much in software so UML can be used as a vehicle encode

this best practices because the UML is giving as a platform in which I can express a concept in a

platform independent language, language independent even at times domain independent

manner, so this is a basic essence of UML.

(Refer Slide Time: 12:45)

And while we discuss this it is also important to understand and highlight that UML is a - is

characterized by Openness, what does that mean that UML does not say that you have to use a

specific modelling tool or you have to use a specific language it does no - it would not say that

you must use C++ or you must use Java or you must use python.

It will not tell you that this is you should use the waterfall process of development or agile

process of development or you should use industrial development it will not make any

prescription it is not meant for prescribing any of this or any of the other actual detail practices

that are involved.

It is open so that irrespective of what process you follow, what modelling language, what

programming language, what platform, which hardware you are planning to use irrespective of

all these parameters UML would be equally useful for you to model the system and to take it

through the life cycle of development.

(Refer Slide Time: 13:55)

So a quick bit in terms of how UML got formed I really do not have the time to go over the

details of history but that history is indeed very interesting, the concept of being able to model

system in a formal way started quite long back and in 80s show a lot of activities and which went

into at least the first part of the 90s and it saw a proliferation of several different ways several

different languages and protocols to model systems, till majority of the proponents of various

models Booch, Rumbaugh, Jacobson and so on.

You - you are already familiar with Booch's name we are following his book very thoroughly

they all collaborative join hands and UML was formally that way created with the formation of

the Object Management Group there is a website on OMG I would suggest everybody that you

go OMG site and you will find a whole lot of very useful information not only on UML but in

general on Object Oriented Analysis and Design, and especially you will find information which

is oriented towards a current practices.

(Refer Slide Time: 15:21)

So in this background this kind of late 90s that UML started existing in its current flavor so this

is - this is kind of the era of fragmented development then people has joined hands and stay put

all this together and the U in UML that is in Unified in UML is actually the unification of all

these methods you know some people tend to thank that it is called unified because it can be used

over multiple faces of SDLC are used to express variety of concepts.

Those are also true but in primarily got its name by the unification of methodologies that it

represented in the late 90s. And then over this whole around 25 years nearly 30 years I am sorry

its nearly 20 years it has developed and OMG managers and the versions UML from one to the

other and this UML 2.5 is a current version that is existing in the standard. So while we discuss

UML, we will over discuss some of the starting from the early concept.

So not we will often restrict ourselves to the 1.X kind of standard because 2.5 has lot of

advanced concepts which we may not have time for but we will take glimpses of 2.5 from time

to time as it needs.

(Refer Slide Time: 16:54)

As I said the UML is graphical so what it has the core of UML is collection of diagrams so it

consists of previous diagrams that captured various aspects of software design, so the idea is

simple that a software system or a system in general we have seen that there several different

complexities and there are several different ways that we can look at the system we have

discussed these things at length in the earlier modules.

So the UML takes a very simple approach to address this, that it has identified what are the major

aspects of that you need to know that you need to decide on for a complex system and for each

one of them there is a category of diagrams and that diagram has specific primitives which help

you actually capture as well as analyze the aspects of that.

So for example you will have a bunch of class diagrams necessarily for - we have already seen

that is not easy to capture all classes in to one set so a system will have multiple classes, multiple

kinds of relationships so the class diagram can be built up over this collection into smaller to

bigger set to give you a very unique UML description.

And it has UML supports a strongly support a name unification which means that across

different diagrams and across different modules of the design the same name can be used and

therefore we will see that a name that is used in this use case to represent a use case will be used

in the class diagram to represent a method the corresponding method, a an actor in a use case

will be become a class in the class diagram representing a particular group of individuals is

taking that action so that's the - that's the broad basic point.

(Refer Slide Time: 19:09)

And based on that this is just to give you an overview glimpse of the whole thing so you can see

that, the route is the UML 2.5 diagram the collection of all diagrams and then you have two types

of diagrams the Structure diagram and Behavior diagram.

And as you must have noticed by now is whenever we draw this kind of an arrow let me draw it

clearly again that's an open triangle with this then which means a is a or generalization

specialization relationship so to describe the UML diagrams we are taking care of the same

notation, this notation is part of the UML class diagram and some of the other UML diagrams so

we say structure diagram is UML 2.5 diagram this arrow.

The behavior diagram is a UML 2.5 diagram this arrow and so on, so basically here in this slide

not only see a collection of these diagrams but you see kind of there specialization generalization

hierarchy so we know that these are the two basic types of diagrams and then we have a variety

of different class structure diagrams like this, there variety of different behavioral diagrams like

this and so on.

In reading this chart you have to remember a basic color code the diagrams that are written in

black are part of the standard so Class diagram or Use case diagram are part of the UML 2.5

standard, but the diagrams that are written in blue are the level of proposals they are being

discussed and they have not yet made to the standard some of them may become a part of the

standard UML in future some of them may get dropped also and there are several inter-

relationships between them.

For example, if you are talking about a composite structure diagram then you are saying that

there are two specific sub types of it in terms of the internal structure and the collaboration use

diagram so these are at the level of proposal so what we will do this I am presenting you the

whole picture to just give you the current truth of what the UML 2.5 looks like.

But we will concentrate primarily on the diagrams in the standard and there too we will just take

up a subset because it may be otherwise quite a lot of time taking to complete all of the diagrams

we will just take a measure ones and discuss this.

(Refer Slide Time: 22:03)

So first let me say a few words about the basic tool sub classes of the UML diagrams, one is

called Structural diagrams and the structural diagram show the static structure of the system so

we have had we have been seeing this notion of static and dynamic description all through I

mean - I would refer you back to our discussions on objects and their nature we observed that

objects have an identity but besides that they have attributes and they have properties, attributes

are the static structure and properties are the dynamic behaviour.

So similarly the diagrams here are also in a way static structural diagrams give us a static

structure, that is how different parts of the abstraction at different implementation level are

related to each other that, but this is static which means that when the system is actually built up

deployed and works these are not going to change over time these are - this remind kind of fixed.

The other side behavioral diagram which talks about the dynamic behavior that is how does the

different objects the behavior of different objects change with time what happens if I want to get

into a system and I want to perform a login I have to perform a sign in kind of activity then what

are the different actions that into happen in what sequence, in what temporal order, in with what

dependencies to allow or dis allow me to sign into the system is a part of the behavioral or the

dynamic behavior.

So if we cannot that some of the subset of the diagrams we will talk about structural properties

and subset we'll talk about behavioral properties.

(Refer Slide Time: 24:11)

So let us start just take a very quick look in terms of this so the - the way of organized is for all

the diagrams exist in the standard we are first talked about the behavioral diagrams and then we

talk about the structural diagrams. Here I am just trying to make a very brief overview to you

about this each and every diagrams we will take up many of them at length and we will have

separate modules discussing regard at - at times multiple modules discussing them how to use

that wherever applicable.

We will take the case of the Leave Management System and illustrate how the corresponding

diagrams can be met up. So the most important possibly to start with and the first fundamental

diagram that UML behavioral has to start is Use case diagram where you represent the

requirements of a system including the internal and external influences what is happening around

the system there many gross ways.

Then Activity diagram talks about what are the different activities that internally happens in the

system what are the operations of the system. State-chart diagram basically borrows its mean

from the state transition machine or finite-state automaton are finite state machine so it means

that I can think of that in the system there are several situations where there are a finite set of

possibilities and the system keeps on moving from one possibility to the other and that is what

we say is the finite state machine.

State-chart basically is an enhancement of the finite state machine which along with telling me

what are the different states that a system can be in for example in the sign on system I could be I

may have signed up and I may not have signed up if I have signed up then I'm signed in or I am

not signed in if I have signed in then I may have a state of coming in next time without having to

sign in again and so on.

So these are the different states and state-chart that allows me to play around with these different

state information.

(Refer Slide Time: 26:17)

The next set of behavioral diagrams are all clubbed in to one sub category known as interaction

diagram because the define different kinds of interaction behaviour other the Sequence diagram

is most frequently used which will tell you what is the order of events that happened. The

Communication diagram will tell us that what is the order in which objects exchange messages I

would just again remind you that our vehicle finally is a client server model.

So when you do all these modelling finally we would like to take it to some messages being sent

from one object to the other so the sequence diagram tells us the temporal order in which the

messages are sent, and the communication diagram tell us the special order or the object to

object order of how messages are sent. Timing diagram as the name suggest is closely related to

the timing information and Interaction Overview diagram basically tries to model that how

interaction flow be from various sequences collaborations and activity flows.

So it is kind of sets little bit at a higher level compare to the sequence, communication and

timing diagrams which are particularly object based, interaction overview diagrams is often at a

level of modules.

(Refer Slide Time: 27:41)

Coming to the structural diagrams the main structural diagram of course are the Class diagrams

and Object diagrams, class diagrams and as we go into detailing them after a couple of modules

we will find that you have already come across much of the notation are the diagram convention

of the class diagrams and the objects in terms of our process of identifying classes and our

defining objects.

Certainly the other structural diagrams Package which basically encapsulates the different

components and puts them as a part of a bigger module.

(Refer Slide Time: 28:19)

Further structural diagrams include Composite structure diagram which gives a complete

structural view of the system with all its sub-parts and interfaces and so on and the

complementary to that is the Component diagram which primarily show you what are the

physical aspects of the system so the composite structure if it talks about various interfacing

relationship between components the component diagram specifically talked about what

components and what static implementation view of this components that you need to describe.

And though we have talking about analysis and design we will find that several of this diagrams

actually go beyond that boundary and Deployment diagram is a direct example of that where you

not only just talk about the early phase design but you talk about the late phase implementation

where you decide, okay.

We finally this system will be deployed over five servers and it has 17 modules you actually

decide which module will run in what server whether some module will run in multiple servers

whether one module - one server would accommodate multiple modules and so on, that whole

description of hardware component and software component mapping is given in terms of the

deployment diagram.

Finally, Profile diagram is an auxiliary one which talks about what kind of profile, for example if

you are implementing on Java what kind of would you like to use J2EE or you will be using

J2ME, if you are using J2ME would you use an Android profile or you will use a IOS profile, so

these kind of information’s are often shared in terms of the profile diagrams.

(Refer Slide Time: 30:13)

So to summarize we have understood that UML is required to create a standard notation for

designing and modelling software systems to liberate ourselves from the vagueness and

imprecision of natural language and also not to get trapped in the intricate analytical and

expressive power of the programming languages. UML majorly contains two types of diagrams

structural and behavioral diagrams.

And we have seen variety of structural and behavioral diagrams overview and the overall system

is will be captured in terms of all these different diagrams, so with this overview you will in the

next module we will take a brief look into the basic design process design and implementation

process of the software to realize how we can start using these diagrams and then we will move

into the discussion on specific diagrams.

