
Object-Oriented Analysis and Design
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology – Kharagpur

Lecture - 26
How to Build Quality Classes and Objects

Welcome to module 15 of object oriented analysis and design. Over the last 4 modules, we have

been discussing, introducing about the nature of objects and classes and their relationships. In

this module, we will talk about a few basic parameters to decide how to build classes and objects

of good quality, that is what defines if my design of classes of objects is good, is moderate,

workable or it is pathetic and will cost me lot of pay.

(Refer Slide Time: 01:00)

So in this module, we will briefly introduce some measures of quality and then on the specific

aspects of design like if I am doing a class design then I need to decide on the operations, the

relationships and certainly find the implementation. I will highlight the four issues that need to

be you need to take care of; you need to be careful about when you do these designs.

(Refer Slide Time: 01:28)

So in terms of the measure of quality a lot of, after a lot of years of research and experience of

various projects, successes and failures, the community has more or less agreed to use five major

measures to decide whether an abstraction has been captured well or there is scope for

improvement. So the first is coupling, coupling basically says that if I have two classes of

modules then how couple they are, how closely interrelated they are.

Now, certainly if two classes are; there are two different classes and there is a lot of coupling that

this class uses a lot of information from the other classes, that class uses a lot of information

from this class and so on, then certainly it may not have been a good idea to make them as

separate classes. They should have been in the same module, should have been in the same

class.

So that is what we are talking about that if we have the two classes and the coupling that we have

which is basically the density of messages that they need to exchange has to be low. So the inter

class coupling should be kept at a minimum. Now of course, this will contradict one of the

earlier design principles that we have been preaching is inheritance is a good idea because it

gives such a good hierarchy.

But certainly if we are using inheritance then we have a very high coupling because any

superclass, rather any subclass will use the whole lot of information from the superclass, so there

is a lot of coupling in them. But there is always a trade - off in terms of how much you couple or

how much you use the inheritance of. The second principle or second measure is cohesion.

That is if I have an object, if I have a class then all the data members and methods, messages that

exist whether they should be together. Am I putting too much in to one class that is things which

are not related, am I putting them together, we will have to decide based on that. So cohesion

must be high, which is intra class all different methods and members that we put in a class, they

must be closely related.

So, we had discussed this overall in terms of different aspects of separation have concern and all

that these two we had always said that between two entities, between two modules, the traffic

that goes across modules must be significantly low, whereas the traffic that goes within a module

must be significantly high and that is the basic meaning of coupling and Cohesion. So those turn

out to be the measures as well.

The second next two measures are also related, one says that the design should be sufficient that

is you should do a minimalized design, you should not do a design, which has lot of methods in

the interface which may not be necessary. For example, you are designing a stack you always

talk about designing stacks, there is a push, there is a pop, I could think about a method which

does a double push, that is text two elements and pushes them one after other.

I can do that; I mean that way also I can make the semantics of stack correct but there is not

something that is a good design because it goes against the minimalist principle of design. It is

possible to do with the standard push, so I should not have a double push kind of operations

available on my stack. And completeness on the other aspect is, on the other side which says that

in terms of the design, how I covered everything that I needed to cover.

For example, if I design a stack which has a push, pop and top and does not have an empty. By

analysis, I must be able to reason that this is not a complete design because there will be

situations, where you will not know whether you should actually invoke top, send that of

message or you should actually invoke the Pop message by adhering to the contractual

guarantees that we have talked of.

So in this way, the sufficiency and completeness are two measures that we regularly should

apply, whenever we are designing the class and finally, it is the primitiveness, you have to decide

in terms of what is the primitive that you build with. Now certainly few primitives have to be

given by the OP language that you are using, so they are typically the built-in types, those are the

representatives of the classes.

But based on that what you decide to be different classes is based on the primitives that need to

be performed. So, this is a kind of a subjective decision, but it will depend significantly on what

can we efficiently implement. So these five principles of, measures of coupling, Cohesion,

sufficiency, completeness and primitiveness will be necessary for judging any abstractions.

(Refer Slide Time: 07:16)

So whenever your design is done, you should try to focus on doing these measures and checking

out, if you should improve on the design. Next, we will let us talk a little bit about how should

you should choose your operations so that is the first thing you need to do, how do you get

started with the class design. Certainly we have seen that the whole scenario is a Client - server

based, whether there are clients there are servers and messages passing between them.

So the first thing that certainly we need to decide is what could be the set of messages, what

could be the operations that need to be supported for a certain class before we can talk about

what is its internals or what is its relationships with others. So when you are crafting a interface

is not an easy problem at all.

But when you are crafting that then you need to primarily take decisions about these two aspects,

one relates more to the overall behavior of the interface and the other relates more to the non-

functional implementation related nature of the interface. The functional semantics and the time

space semantics, so let us talk about this one by one.

(Refer Slide Time: 08:32)

In terms of functional semantics that is what should be the different methods that you perform,

that you provide to the class, that is a big trade of is, I mean these are standard prescriptions from

very successful designers but I will put it in very simple two word terms for you to remember is

when you are designing operations, when you are designing methods, you have to always make a

trade - off between being too fine and being too coarse which I mean is if you have operations,

which every operation which does very small, small things like.

I have an operation which just increments the value, I have another operation which just takes a

number and takes out the (()) (09:22) of that number and so on. Probably, I am getting too fine, at

the same time if I am designing for a Bank account management, then I say that I have one

interface through which the username, user ID and password is taken. It is authenticated the

account is identified.

It is displayed and within that the same method itself the account balance is shown. If there is

any overdraft default that message is thrown out and so on. So all of that I will do in a single

message, in a single operation, then I am getting two codes. So that trade - off is very very

important. And certainly that is where object oriented analysis and design becomes somewhat

little bit towards the arts feel then being a very concrete science.

Because you cannot exactly ever say us to, what is too fine and what is too coarse. But you will

always have to ask yourself this question so whatever operation you design, you think, I mean

should I have broken this down into two or more other operations, at the same time, ask for the

class that given all these methods, is there are a scope to combine two or more operations and do

something better.

For example, I could talk about stack you will find in many text books, you have an interface for

a stack, where the push works in the same way, but pop has a definition that removes that of

most element and returns you that element and there is an empty. Now, if you define a pop like

that which removes as well as returns you the element then you will have to put a judgment as to,

are you making it too coarse, should you split this into two operations, in terms of one which

removes the element and one which returns the top element and be strong that you should do the

design.

And a quick analysis in this case, will tell you that it is always better to have a separate method

to return the top element and a separate method to actually remove the top element, which then

you would not return very simply because if you do not have a top, you use pop to do all that

then after pop is a only way to check an element, so after checking that if you feel that you did

not want to remove this element then you will again have to push this element back.

So that means additional work that means additional time and in some cases, it might mean a

very different semantics. So that those kind of choices are what is important and to place a

method that if you find this is ok that this is the operation I can see then I need to find out an

appropriate class for doing that, decide whether there should be a class for this, these are the

factors that you should keep in mind that certainly you should put it in a class which can be

reused.

You will have to look out what is the complexity of its implementation, how often it can be used

and of course, it will depend on the knowledge that you have, the designer has in terms of the

behavior’s implementation, the platform dependence and so on. But, these are some of the

factors that we will need to keep in mind in deciding how we close on the functional semantics

of an operation.

(Refer Slide Time: 13:07)

Now once we have the functional semantics then there are factors relating to more details of

implementation and some of the questions that need to be answered is, in terms of amount of

time and amount of space. Certainly you will need to have some idea as to what you want, for

example if you are very (()) (13:32) example will be about finding elements from a large pool of

existing data elements.

So, if it is important that you need to find the elements very quickly, then you will possibly

design the operations in a way, so the time is optimized. But you may be able to afford some

space but it could be other ways, if you really do not care about how much time it takes, but you

are trying to implement the functionality of this search on a mobile phone, where space is a

bigger premium than time.

So those are the time, space semantics that need to be decided, you could do that based on a best

case, average case, worst case and so on. And specifically we call that whenever you have

operations, the operations or messages acting on objects, objects are in a concurrent situation. We

have explained the different situation of synchronization between them. So, the time space

semantics also will have to look into whether there is a need for synchronizing, whether there is a

need for mutual exclusion that we need to put to in the design.

So your overall choice of operations should be guided by this requirements of the functional

semantics and the time space semantics.

(Refer Slide Time: 14:58)

Moving on once you have chosen the operations, the next would be to choose the relationships

amongst classes. What it means that suppose I have say, I have object X and that sends message

M to object Y. Now, certainly this message M is what I have decided on, because I have chosen

my operation, so I know the message M. Now, once we have that then naturally if this message

has to be send either directly or indirectly, the necessity would be that Y must be accessible to X.

That is in terms of different encapsulation visibility restrictions and so on, unless is Y accessible

to X this message design, the operation design will not work. So, the relationships have to be

chosen keeping in mind the different choice of operations and the way you have started doing the

design.

(Refer Slide Time: 16:05)

And their two principles which people follow very frequently. First is the law of Demeter, the

law of Demeter says that in terms of choosing the relationship, you have to make a lot of trade -

off judgment, which is first, I am just trying to use one inheritance hierarchy to explain this that I

can have a hierarchy that which is more like say, like this, 1 base class, one superclass everything

else is a leaf child class, is a one kind of Hierarchy or maybe not only that but I have this, lot of

here.

So these kind of we will say wide and shallow that is where the depth of the hierarchy is less, but

the breadth is very high. So if the breadth is very high then you have a large number of leaf

classes, so it will give you a forest. Now, certainly it is much less like a tree, it is more like a

forest, so all these leaf classes are independent. So if they are independent they hardly share the

properties that could have been shared, that is a basic purpose of inheritance to share properties

across classes.

So if the hierarchy is very wide and shallow then you are not exploding the commonality that

exists and you are missing out on key design clue that may happen. On the other hand, on the

extreme if your hierarchy is very narrow and deep suppose you have this, that is this width is low

but this depth is high. Then, also it will not be a good design because you will have long Chains

of inheritance where you have just every class is trying to get something from the parent and so

on, possibly (()) (18:12) is so much that you do not have a good manageable design.

So you recall the kind of vehicle design we discussed about in the earlier module, the module 14

those kind of are known as the balanced design, where you have kind of two extremes that your

depth is not very high, at the same time, the width is also not very high so there is a fair amount

of commonality that is exploited and at the same time in terms of exploiting that you have not

made the whole design very (()) (18:48) and decide on that.

The similar principles can be used amongst single inheritance in cases of aggregation that is how

much to compose, how many different parts should I break it on to (()) (19:06) to represent a car,

Do I take the car and then break it down in terms of and nuts and bolts and wires and connectors

and seat covers and all that or I do hierarchical aggregation there, what is a dependency

relationships and so on.

So on the same principle of trade - off what is very fine and what is very coarse this relationship

designs must be done and also there should be design choices made in terms of how do you

relate that, for example you have car and engine. Certainly, I started saying that this is a case of

aggregation but who said this has to be a case of aggregation, aggregation is one way of looking

at itself. Car contains engine is one view.

Now could I say that car inherits from engine is a specialization of engine, will have to see

whether that might sense. But you can certainly say that car uses an engine, I think of car as a

separate entity, engine as a separate entity, car uses an engine. So there is certain decisions to be

made in all these cases as to, which one is the right way to relate different classes and

accordingly you can you should make that choice and that is what the law of Demeter talks

about.

(Refer Slide Time: 20:28)

Besides that, you will have to look into the mechanisms, the visibility requirement. Suppose a

passenger intends to board a bus, so there is a passenger class, there is a bus class and you need

to place the board method and for that board method you need to have the visibility between

passenger and bus.

Now there are certainly 3 choices you can have a board method in passenger and let the bus goes

as a parameter to that, so that where you send that or the bus can have a board method with a

passenger sense it and goes a parameter or both could have board methods which collaborate

between themselves. Now depending on which class has a board method, the visibility will have

to be accordingly. For example, if bus has a board method then bus must be visible to the

passenger.

So the passenger can send the message to it. So these are the different choices in terms of

mechanism and visibility that you will need to apply to decide on the relationship.

(Refer Slide Time: 21:30)

The third aspect in terms of the quality of design will depend on the implementation which is

often would mean a lot of skill, lot of understanding of your vehicle of implementation that is the

implementation OP language as well as the platform. I would just like to highlight that two

factors that need to be critically looked at regularly is the representation that you are using for

the class and the packaging or the placement of the class that is in a large system.

There are large number of classes, objects, modules, objects occurring, now you need to certainly

group them into certain sub systems, certain modules. So the representation has to be appropriate

as well as the grouping has to be appropriate. So that again the traffic across modules can be

minimized and they can be more cohesive in that form.

(Refer Slide Time: 22:25)

So representation should be done in a way so that you remember the basic principle of the

implementation, that implementation must hide, it must encapsulate all the secret, all the details

of the implementation. Couple of modules back while discussing about the nature of classes I

talked about this aspect with an example of a stack and I show that how for same interface we

could have multiple people different implementations of a stack, which could change irrespective

of, which interface the customer is using and without the knowledge of the customer.

So that is a very basic requirement that any implementation must satisfy that, any change in the

implementation usually should not impact the interface contract with the customer and that is

what you should try to follow but there are several trade - offs to be made, several choices to be

made resemble, for example some of the common ones are should I optimize for space or should

I optimize for time. The new dimension being added in many places, should I optimize for

power?

Similarly, in terms of any application that needs to do some kind of a search somewhere there is

always a choice between do I optimize on search, or do I optimize on insert, delete. We all know

that if we use some kind of array structure, we will have very optimal search but very inefficient

insert, delete. If you do a list, insert, delete is very quick but the search gets very slow. If for that

we want to do a binary search tree, then possibly these two get balanced.

But I need more time rather I need more space, because now the binary search tree has different

pointers to manage and so on. So there are different choices, another very common choice in

terms of the class design that we will need to do is compute or cache. That is there are several

values which you could compute on the fly or compute once and keep it stored.

I will just give an example, suppose you regularly need the age of an employee now what you

could do is, naturally age is dynamic so it does not remain the same so what you do you keep the

date of birth, so what you could do whenever the age is required you could compute the age and

return that.

Typically, you do not need the age in the granularity of the days, you need it in terms of years. So

one we could be that every time you do this that is basically compute your choice, the other way

could be that ok, you have an age field and which you compute on 1st January for all employees.

Because your logic is that within that year the age will not change or whatever changes will

happen that is just for one year which does not impact or on the date of birth of that employee

you compute the age and store it.

So what you are doing, you are caching the computation. So there is a tradeoff between what,

which one should be used and these different factors will decide what kind of representation,

what kind of implementation you will choose for.

(Refer Slide Time: 25:51)

Finally, in terms of packaging you have to put the classes and objects in modules. If you are

using a platform OP language like Java or C sharp then you will, these are actual physical

decisions because you have to decide, which java package some classes going and the other

classes will possibly go in some other package and so on. If you are doing in C sharp, you have

to decide on the projects, if you are doing in C++, you will need to decide on your own

packaging in terms of different source files, header assemblies and so on.

But this is a very critical decision to make because this will directly have an impact on the

visibility and information hiding the trade-off between visibility and information hiding because

if you put certain classes together in to one module then it is much easier to make them mutually

visible and hide all of their visibility from someone, who is not in the same module and so on

and so forth.

So those are the factors in packaging besides that there could be lot of non-technical factors like

how you want to reuse, if you want to reuse something across variety of different modules you

would not like to put them hard into one module but may be have a separate module for it. The

security could be the matter, the documentations several other factors which could impact the

choice of packaging in implementation.

(Refer Slide Time: 27:32)

So to sum up in this module, we try to introduce you to the concept of having certain quality

measures for designing the abstraction and for designing the classes and objects in terms of

coupling, cohesion, sufficiency, completeness and primitiveness and then for the three major

aspects of the design dealing with the choice of operations or methods, the choice of

relationships between classes and finally the choice of implementation we have tried to talk

about some of the pinpoints that can happen in the whole design, some of the parameters that you

need to keep in mind while you go ahead with the design.

We will take this forward in the modules for the next week, where we will expose you with

different semi-structured techniques of identifying objects and classes and relationships and as

you do that all these principles that we have talked about in this module you should bear in mind.

More and more you can put them into practice, you will become a better designer of the object

system that you are given to work with.

