
Object-Oriented Analysis and Design
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology -- Kharagpur

Lecture – 20
Relationships among objects

(Refer Slide Time: 00:29)

Welcome to module 12 of object-oriented analysis and design. In the last module we have

discussed about the nature of objects. We have noted that an object is typically characterized by

its state, its behavior and its identity. So with that we are now ready that in our system we will

have identifiable objects as many of different object as we need to and each object will have its

states which can be in terms of static properties and dynamic values.

And each object would manifest the different behavior for providing services to other object and

they will interact to build up the system.

(Refer Slide Time: 01:39)

In the current module we will talk specifically about relationship between objects. So our

objective in this module understands the relationship amongst objects.

(Refer Slide Time: 01:43)

This is the module outline as usual this will be visible on the left hand side of every slide so we

will proceed according to that.

(Refer Slide Time: 01:54)

In terms of relationships of objects, the point that we note that in the whole system we will have

several different objects that would exist. But the object one or more objects in isolation does not

provide any interesting system. This is not an interesting situation to analysis or design. But

when the objects come together they get interrelated they get associated link in different ways

then they start showing really interesting properties.

They start giving capabilities which are critical for the total complex system that we are

designing. Say for an example, here I just show an aircraft. This is as you can see this is the

whole of the aircraft and it has a different component object say the cockpit, the engine, the

wings, two sides, the rudder, and the slates and so on. The several different objects exist in that

airplane.

Now if we look into this object individually they themselves have some complex behavior but

with each by themselves do not really achieve anything till we put them all together connect

them all together into a single airplane which can fly and carry people. So the relationship

primarily has to talk about how the objects can get interconnected and behave between

themselves.

(Refer Slide Time: 03:47)

In terms of object-oriented paradigm, we talk of two important relationships for objects one that

is links and often they are also referred to as association and the other is aggregation.

(Refer Slide Time: 04:08)

So first let us talk about links. The link is a physical or conceptual connection between objects.

So I may have two objects which are physically connected like I have just talked about the

airplane. The cockpit, the body, and the engine of that aircraft are physically connected so they

are linked or there could be conceptual connection between two objects. I am an individual so I

may be described in terms of an object which has a name, date of birth, designation, affiliation

and so on.

I have a bank account with some bank where my account has the account number the type of

account, the transactions, the account balance and so on. So there is a relationship between me

and my account this is also a kind of link but this link is a kind of conceptual image. There is no

physical link between me and my account but certainly I am related to my account. My account

related to me. So that is a basic notation of links.

An object collaborates with other objects so it says this in formal terms an object collaborates

with other object through its links and this links if we refer back recall a basic model of object-

oriented systems. The model is the client-server model where two objects one needs a service

and the other which will provide the service. The one which we call the client which needs the

service and the provider the server object will pass messages between themselves to achieve

what is required.

So links necessarily show that where the message can pass from one object to the other. It could

be a use kind of a message invocation kind of a message or application for services kind of a

message or it could be just navigation from one object to the other. So link basically is a

representation of the interrelationships between two or more objects.

(Refer Slide Time: 06:34)

In this links are more often depicted in some graphical notation and we will start introducing this

and slowly we will see at a later point that refinement of this notation will result in to our unified

modeling language diagrams. The UML diagrams. So here we are just starting with every simple

notation where I have one object which is just written shown as a rectangular box. There is

another object and there is a link connecting them.

So this says that there is a link there is an association between object A and object B and in this

case please note that there is a direction given so it is the link is direct one. It says that object A

can ask object B to provide a service. So the object A can pass a message or invoke services that

object B provides. So that is done in terms of sending the request message from object A to

object B.

And so there is two kinds of directionality that is involved here one is the direct of the link which

shows who is requesting this object is requesting and this object is responding. And then on top

of that we are showing the direction in which the message goes certainly the client object who is

requesting has to send a message to the server object so that direction is same as the direction of

the link. Now in some cases the receiver object or the server object will need to send back some

result or some response.

So there could optionally be a message which goes in the reverse direction of the link as well. So

on one side the link shows who is the client? And who is the server? Who is requesting and who

is serving? The message direction on that could be in the direction of the link that must be there

because that is how the request is made. But there could also be bidirectional flow of messages

over a particular link.

(Refer Slide Time: 09:00)

So with this let us look at a very simple example so this is we are talking about flow control

systems has three objects. There is a valve. So it is basically the application is like this possibly

there is a pipe through which water is flowing and that flow needs to be control that you can

increase the amount of flow. You can decrease the amount of flow and so on. So the object

through which you do that is called a valve.

And certainly there is an object which we model here as flow controller who decides as to how

much flow will happen so that controls the flow so it can adjust the flow that is happening and

the third we are also talking about a kind of object say like display panel where we can see what

is the current flow that is happening. That is kind of a simple model so you can think of I am

specifying this in terms of a flow control system.

The similar thing you find in terms of the electrical metre that we have at home and so on. So if

we look in to the specifics of this so it has three objects as I have already mentioned. The flow

control object has a link to the valve object. I am talking about this particular link and the

direction of this link say that the flow control object can sent messages to the valve object. So

this will be messages like adjust.

So the flow control will say that you adjust you increase the volume decrease the volume. You

can increase the volume by certain number of units and so on. So the link from the flow control

object to the valve object shows that this can work as a client and ask while this works as a

server ask it to adjust the flow. In a different way there is a link from the flow control object to

the display panel object.

When the flow control object has adjusted the flow the flow control object would sent the

message to the display panel say that to display that this is going to be the flow that is going to

happen. Or it could also be that the flow control sends message to the valve saying that this is the

adjustment and then valve as it gets adjusted to the new flow sends a message to the display

panel and shows that message.

So that this link shows that there could be a message from the valve to the display panel as well.

So this is the basic way to show how different objects can be linked between themselves.

(Refer Slide Time: 11:56)

So if we look in to the messages that exchange the flow controller invokes the operation on the

valve object here again please note that the message can be bidirectional because it is requesting

the valve to do something. So say if it is adjusted then possibly the flow controller will simply

say okay adjust increase it by two units, decrease it by three units something like that. But

suppose it wants to send a different message to the valve object saying it is closed.

So it is trying to check if the valve at all is working or it has been closed down. So naturally the

flow controller need now in this case expects a response back from the valve object as to what is

the state of the valve object is it flowing or is it closed it is stopped. So even though there is a

single direction which is sending the message is closed it will expect a message that which will

say may be say true or false something like this.

So the message flow in this case could be bidirectional. On a single link of one direction there

could be multiple directions of messages that can fly between them.

(Refer Slide Time: 13:16)

Now we also characterize so this is we just took a look at how the messages can flow. How that

will depict in terms of connecting the object through links now from this link diagram of

message we can talk about what is a rule that this participating object play in terms of a link. So

some objects like the flow controller basically sends out messages to others to get some service

whereas it by itself the flow controller does not serve anyone so such objects are known as

controller objects or active objects.

They kind of control the system; they kind of drive the system. We will see more specifically as

to what is the definition of active objects what characterizes flow control in this case is a fact that

other objects do not operate on it. But the flow controller operates on the valve and the display

panel. The display panel on the other hand does not operate on any other object. It does not ask

for a service from anyone else.

It will just provide service to others that is whether the flow controller asks it to display some

information whether the valve asks it to display the flow rate it will comply and display that. So

such objects which only provide service are known as the server objects and if you look at the

valve object, the valve object actually does kind of both. It provides service to the flow control

because it can receive message from the flow control to adjust the flow to respond to flow

control as to whether it is closed or open.

At the same time, it could send request to the display panel to display the state of the valve to

display the amount of flow that is happening in the valve. So these are kind of object which at

the same time can operate on some other object and can be operated by other objects such

objects are known as proxy objects. So we have seen that we have primarily flow controller or

active object flow who only asks for services.

These are commonly called clients. We have server objects who would predominantly provide

services to others without asking from service from others. These are known as server objects

and the proxy objects are kind of mixture of them. The identification rule we will see later on

would help us in actually finding out how this different object should be implemented.

(Refer Slide Time: 16:25)

The next parameter that we need to know is that the objects also has visibility factors. For

example, the flow controller has to send a message request to the object valve. Naturally that

means that the flow controller must be able to see the valve object. Flow controller must know

where the valve object exists and it should be able to send that message. Visibility basically

means that whether it can actually send the message whether it can actually send the request.

So it is important that between the objects the links alone will just say whether there is a

possibility of sending a message but will also need to make sure that in the whole pool of object

that exist in a system there is proper visibility between them. And there are four types of

visibility known by public visibility, package visibility, protected visibility and private visibility.

We will not elaborate on this a lot here.

But we will come back to this in a later module after we have discussed about the classes of

different modules.

(Refer Slide Time: 17:56)

The next concept in connection to relationship amongst the object is the concept of

synchronization. And this is a concept which you need to understand every carefully because this

is little different from the typical programming concept where we know that we have written a

code and we start executing it if you have written it C or Java kind of language then we know

that there is main function from where the execution starts.

Different functions are called and when the task is over this particular main function terminates.

But in terms of an object-oriented system when that comes in to be please remember that we

have multiple objects. So if we try to kind of look at the model we have multiple objects I have

drawn similar figures very often. We have multiple objects and the objects are sending messages

they are sending post back response and so on.

So what we need is when object one who is the client is sending a message to an object O2 then

both object O1 and O2 must be in execution. That is unlike the typical programs that you may

have written and executed earlier which are called sequential programs or single threaded

programs. Here we need different executions happening associated with different objects.

Because in the time when O1 executes O1 is doing its operations at the same time O2 will have

to do its operations as well.

So these are typically called distributed systems or concurrent systems to be more precise. And

whenever you have that there is a need for synchronization because if two threads or more

threads are trying to work on the same objects or the same set of objects because there are

different objects running on them then there is always a question of issue of whether the

operation will be correct whether the operation is performed in the right way or not.

So we will soon discuss an example to illustrate this further but before that let me introduce two

different types of objects in the context of synchronization. They are called active objects and

passive objects. An active object is this is the definition and an active object is which instigates

an interaction in a thread. That is what it is simply means that an active object by itself will

decide that something needs to be done and we will start doing that.

So the thread on which the active object runs will by itself manage change its state and for doing

whatever it is to do send message to other objects. Naturally they are responsible for handling

control to other objects because they are deciding what needs to be done. In other terms we will

call them as clients. Like may be some of you may have had the situation to deal with the client

situation where the client is subscribing to a project pays you for the project and you have to

provide service to the client.

Naturally you know that you don’t decide when things will happen how things will happen? The

client will decide that and based on that you will have to react. So concept of active object is

very similar to that. In contrast passive objects are passively waits for messages to be processed.

They by themselves do not start doing anything they by themselves do not change their state.

They are just in threads which are just listening if there is some message from a client that is

arriving so they get activated when they receive a message from another object.

So in this process once they receive the message they know what service needs to be provided to

the client they just provide that service and accordingly the states of the passive objects get

changed by what the active object send messages to them. So these are known as the server

objects.

(Refer Slide Time: 22:46)

So given that there is different situation that need to be synchronized I just mentioned that we

need to understand what is synchronization all about? And what could be issues? Let us take a

situation which I am sure many of you if not all of you would be familiar with suppose you are

working in an organization or in your college there is a printer which is connected to the

network. So I have what I have is a printer which is connected to the network. This is a network.

And different computers are connected C1 is one computer, C2 is another computer; C3 is

another computer which are all connected to the network. These days we always have computers

connected on the LAN or Wi Fi and so on. Now in these computers different independent people

are working so they decide to send files for printing to the same printer. There is only one printer.

So let us assume that C has requested to print file 1 and C2 has requested to print file 2 at the

same time.

Let us say file 1 has 10 pages this has say 20 pages so both of these request arrive on the object

print. Now you will understand that certainly every page on the file that needs to be printed must

be printed in a consistent matter. Certainly you do not want that you print two pages of file 1 and

then three pages of file 2 or if you are doing back to back printing the situation can get even

worse. You on page you print a page of file 1 and in the back you print the page of file 2.

You would like to avoid that. But the request has come together and the request will need to be

serviced by the printed at the same time. So we need to make sure that even in this situation

where C1 the computer 1 requesting for the printer to print file 1 conceives as if the printer is

exclusively available to C1. C2 at the same time requesting the printer object p to print file F2

also thinks that the print belongs only to C2.

C3 for now is not printing but C3 also thinks the same way. So we need to make sure that in this

context things can happen correctly. That is all this request should not get mixed up. So the

process by which we make sure that these printing tasks or printing file 1 and file 2 would be

done in some way. The request can come in any arbitrary order but they must be serviced in a

certain order so that result is consistent which means that either I print file 1 complete it.

Then I print file 2 or I print file 2 complete it then I print file 1 or if the request to print file 2

comes when I am already printing file 1 that request will somehow have to be put aside till I am

finished with printing file 1. So what we need to do this is known as in terms of concurrency

studies or in terms synchronization this is known as mutual exclusion. Mutual exclusion means

that if there is more than one request which need to be service by same object at the same time

then they will be serviced in certain serial order.

That is the two request will have to be mutually exclusive certainly also please note that not all

request need to mutual exclusively. For example, if an object has a value and two other object

send request to read that value that can happen simultaneously because it does not matter how

many times you read a value from the same variable location you get the same value. But the

situation will require mutual exclusion when you need to write that value at that place.

So that needs synchronization that needs mutual exclusion to be put in place and there are three

basic strategies to do that for concurrency. One is sequential where there is a passive object that

is providing the service and it is linked to only one active object. So the object decides when it is

to send the request to the passive object and therefore passive object has nobody else the passive

object will service.

So in the context of the example we were talking of that means that you have a PC and you have

a printer. Your printer is directly connected to your PC there is no one else. So the print task the

active object can use the printer object the passive one directly which this situation is like a

function invocation as if the calling function and this is the called function. This is the simplest

situation of synchronization which is sequential.

The second could be what is known as the guarded concurrency. What it does is the requesting,

the active object the print task will know that well there are multiple files to print. So what it

means that the computers C1 and C2 will not send the request directly to the printer but it will

send it another object say a print task or print manager kind of object which having received two

request can make some kind of queue between them based on the arrival and send them one by

one to the printer.

So looking from the passive object printer it gets tasks one after the other whereas the print task

which is an active object which actually received the request is managing how to put multiple

request in a serial order so this print task is basically providing the guard that two request will

not lay in the printer at the same time. So this is the situation a guarded concurrent is a situation

where the invoking object or the client object manages the mutual exclusion.

And in that last case it could be that if you are aware most of the printers these days have an

internal mechanism to queue up requests. These are called printer spoolers. So it could be that

your printer is advanced enough to have a spooler so it does not matter the passive object printer

could be given two request at the same time but it will internally do a spooling. It will internally

doing a queuing and manage the sequencing of the two request.

So this is a situation where the invoked object in this case the printer or the server object actually

manages the mutual exclusion and the multiple print tasks would just blindly shoot print request

to the printer. If this situation exists, then we say it is a situation of concurrent access. So we

have seen three kinds of concurrency sequential, guarded and concurrent.

