
Object-Oriented Analysis and Design
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology- Kharagpur

Lecture-15
Elements of the Object Model (Major): Modularity and Hierarchy (Contd.)

Welcome back to module 9 of object oriented analysis and design. We have been discussing

about elements of object model, last module had discussed about abstraction and

encapsulation and in the earlier part of this model, we have talked about modularity and

different aspects of what a modularity should try to achieve and what are the basic principles

of intelligent modularisation.

(Refer Slide Time: 00:51)

Next we take up the last of the 4 major elements that of hierarchy. Hierarchy is a ranking or a

ordering of abstractions so you would have seen a glimpse of this in module 8 when we

talked about abstractions and we said that abstractions could be hierarchal as well, so you got

initiated to that, but hierarchy by its own requirement is eligible to be in other important

element for object models and is described as such.

So it is a ranking of abstraction so which mean that the different abstraction that the system

has that goes from details to less details to, even less details to absolutely top levels so it is

kind of in an artistic view, it will give you a pyramid like structure to work with. So if you are

at the top of the pyramid, then you get to see only very simple the whole thing in very simple

terms, you use the abstractions only at that level.

(Refer Slide Time: 02:09)

Then as you go down, you see more details as you go down you see further details and

different kinds of hierarchies play role and let us take a look into those. What we are talking

about here again you have already had some glimpses of it, so when we talked about

specifically the canonical form of complex systems. We exposed you to 2 work through

orthogonal hierarchies that are common most important for complex system.

The hierarchy of class structures which is typically called as abstraction hierarchy or IS-A

hierarchy and the hierarchy of object structure which is called the part of or decomposition

hierarchy or HAS-A hierarchy. The class structure hierarchy shows you how over the

hierarchy the common property is a share between one layer to the next and the object

structure show you a hierarchy of containment.

How one object can be thought of having been composed of different components or different

component objects and this in turn can be thought of in terms of sub components and so on.

So in this context, the common structure and behaviour are migrated to what is known as

super class, so what we say is in a hierarchy, it class that occurs higher in the hierarchy,

hierarchy is a typically drawn in terms of inverted freeze.

So that classes or the abstraction which occurred at a higher level in the tree and known as

super class and the related lower level abstraction is called as sub class. So if we look into the

diagram below, this is we say is a root abstraction, so at this root, a system is being defined in

terms of one single concept vehicle, so if you say a vehicle all of us understand something.

So that could be lot of different as you say specialisation.

But vehicle we can say is combines all of them together by one unified concepts that it is a

mechanised gadget to transport. A vehicle is a mechanised gadget to transport. Therefore, if

this is the general concept then we can always say that vehicles at least are of, can be of free

types that which transports on land, the land vehicles which transports over water, water

vehicles and which transports through air, air vehicles.

There could be other kinds of vehicles also like vehicles going for space, vehicles which can

go over more than one medium and so on we will not go to those kind of complexity but

when we say this, this is what is a concept hierarchy or abstraction hierarchy, so this is what

we say is a super class and let me use the different colour, these are the subclasses, now

please understand that the super class and sub class are relative notions.

So vehicle is a superclass, relative to land, water or air vehicle, but if I just to focus

specifically on the water vehicles, let me pick up red again, if I specifically focus on the

water vehicles, then the ships, the boats, they are the subclasses of this water vehicle. So this

now becomes the superclass, this is the subclass. So it is in the hierarchy, if 2 concepts are

related in terms of generalisation and specialisation then we will use the term superclass for

more abstract or more generalised concept or abstraction.

We will use subclass to represent specialised more specific class or more specific abstraction.

Now as we go for this hierarchy, then on the 2 sides, there are 2 directions showing that

certainly if you go from below to lower level to a higher level, then you are actually

generalising that you are losing special properties so as you go from cart to land, you lose the

property that cart is far limited transportation.

Transportation of limited number of people or limited volume of goods, whereas necessarily

is for transportation of large number of people. The commonality that you can out here, as

you go up is both of them run on land and similarly you have certain commonality with water

and when you go to vehicle you lose even more, you lose even the fact that on which medium

the vehicle transports, you just retained the generalisation that the vehicle indeed transports.

So this is what would keep on happening, so when we go the other way, that is when we go

from generalisation to specialisation, then a subclass can add, modify or hide methods from

the superclass. So vehicle says that I can transport. When I come to water vehicles, then it

will add that I can transport of course, I have got that from the super class vehicle but we will

add that I can float.

This is not the requirement of vehicles in general but water vehicles will have a requirement

of float. I will add different other factors like I can possibly go with much less loss of power

because water provides far less resistance than land. So I have more and more properties

coming in here and then when we go for the down, then ship has everything that water does,

water vehicle has but it has something more.

It says that it is a big water vehicle which is typically motorized and so on. Whereas when I

talk about boat, then I will typically have water vehicle which are manually driven with will

have oars and all that ships will usually, at least these days will never have oars, they are

driven by underwater propellants and so on, so as we go along the specialisation from top to

bottom, we can add and modify different methods.

In fact, there could be instances where we main into hide a method. For example, I will just

by the side show you an example, suppose I am talking about a concept bird, so I can say that

crow is a bird, because anything the bird can do, the crow can do that, may be crow can do

something more, for example crow can creates a kind of sound in a certain way. I may have

eagle, is a bird, it can do anything that the bird can, but it can do something more.

It can go to really very high heights but let us now look at that I want to put here say ostrich,

all of us know ostrich is a bird, we know it is a bird. But we also know that a method or a

property after being a bird is to be able to fly, ostrich we know cannot fly so we get into

certain kind of contradiction that our hierarchy rule say that a subclass will get all the

methods, it can add new methods, it can change that methods.

But it will get all the methods at the superclass has. The superclass has a method called fly,

birds can fly, crow inherits that, crow gets that, crow can fly, eagle gets that, eagle can fly,

eagle can add other method that it can glide which crow cannot but I come to ostrich, it

cannot fly, so this is the specific example to show that on a hierarchy, we my often need not

only to add new properties to specialise.

(Refer Slide Time: 11:27)

Not only to, may be change the way the method works, change the way the birds fly, they

change the way birds reproduce and so on but you may need to actually omit certain methods

which has superclass has, so you need to look at all of add, modify and hide methods from

super classes. So hierarchy basically provides data abstraction and I mean hierarchy provides

on top of the data abstraction it tries to provide a mechanism by which the properties can

propagate from one layer to the other.

We can see that once we have done abstraction so we have already done 3 major elements so

we know that here is abstraction, so I have abstracted a concept then we know on that

abstraction where putting encapsulation, so moment we have put in encapsulation, we have

put an opaque barrier to hide the methods in the state, we said implementation is not feasible.

Because it is encapsulated. Now I want to say that now I am coming and saying that here, I

have vehicle.

It can transport and then I have land vehicle then I have car and so on. Now if I have done my

abstraction and encapsulation in the right way then this is encapsulated. The properties of

vehicle are encapsulated. Then how does land vehicle define how transport happens? Because

vehicles in general cannot say how transport will happen, it is just an abstract concept of

transportation, land vehicle has to do transportation using certain physical laws.

All vehicles need to do transportation using certain physical laws, land vehicles use friction

or (()) (13:12) of friction, gravity and all that, water vehicles use buoyancy, third law, etc.

Now so there is an inherent contradiction in terms of the way we have abstract and

encapsulated when we want to create hierarchies, where we want properties methods to

propagate from a superclass to the subclass. Now this is something which is specifically

handled in different ways by different implementation languages, different programming

languages.

Particularly, one of the reasons that C++ or Java gets very popular in terms of object oriented

programming is a fact that these languages allow you a great flexibility to provide

mechanisms by which you can honoured the abstraction and encapsulation, at the same time,

create hierarchies, so though we are not going to discuss in depth about the language

constructs in this course.

But it will be good to understand that there are concepts like visibility which say that you can,

of your encapsulation you can create different grades of encapsulation, different porosity of

encapsulation, certain encapsulation are known as private which are totally encapsulated only

if you are inside that class, only if you are inside that abstraction, you will able to use those

properties, use those methods.

The other extreme is basically to provide the exposing part of the encapsulation to honour

that contractual interfaces that you wanted to provide which is a public part, the public

visibility which anybody and everybody can have a look at. Now these 2 do not solve your

hierarchy problems, So C++, Java these kind of languages introduce a very interesting kind

of intermediate visibility or intermediate encapsulation granularity.

Where you say that you are different implementation parts are protected, by which they are

available to the class as the private ones are, as the public ones are as well, but it is

specifically available to this sis the main part of protected, it is available to the subclasses, but

these are not available to public, so protected parts do not become the part of the contractual

interface.

They are just an extension of the implementation of the structure, but they can be propagated

along the hierarchy to make that realisation of hierarchy is possible, so it is kind of, little bit

started you know my great in between the conceptual aspects of object oriented analysis and

design and slowly taking you closer to how it will look in the implementation, so I just

included this part to be discussed as a part of the hierarchy to give you a glimpse.

It is not that everything in this whole paradigm of things are fits into together exactly

seamlessly, certain concepts which we need to impose like hierarchy, which is very critical to

manage complexity contradict some of the other assumptions you made for abstraction and

encapsulation, but this is just to highlight that do not get worried because the languages when

you finally come to system implementation, the languages will be able to take care of that.

(Refer Slide Time: 17:17)

We will see when we talk about UML that we translate all these different elements of the

objects models into UML language, we will able to express this varied kind of visibility and

porosity of encapsulation over the UML hierarchies. Now in terms of this there are these are

more like of terms you need to understand and remember. On a hierarchy we say the term

single inheritance is referred to when there is one superclass.

 There is a specialised subclass, so we will say, [No video or audio from 17:41 to 19:47] here

in a single inheritance, we will say that this is a single super class and this the above on we

will write it as B is a A. So that is the simple presentation so that is called the single

inheritance and if we just refer to the Hydroponic gardening system then fruit growing plan

IS-A growing plan.

(Refer Slide Time: 20:24)

So these are all specialisations and these are specialisations and these are generalisations and

growing plan may be the most general super class that it will have. Single inheritance can

also be extended it multiple levels, so here we have the same, we have B is a A and then we

have C is a B, we have already seen instances of this in terms of the vehicle example, so

when this happens then we say it is multilevel inheritance.

That is inheritance is happening not between just 2 levels but it is more than 2 levels, so a

manager is a lead LMS, leave management system a manager is a lead, can do anything that

the lead can do, lead is an executive, the same property is be an executive as an employee, so

employee happens to be the most generalised super class and manager happens to be the most

specialised subclass in the whole hierarchy of multilevel inheritance.

(Refer Slide Time: 21:14)

A different concept come in terms of multiple inheritance, in multiple inheritance, you

basically have more than one super classes which is jointly specialised into common subclass

so whenever that happens we say that we have multiple inheritance because when this will

happen then C, the class C will enjoy the properties, methods of class A and as well as class B

and multiple inheritance is a regular reality of art life.

Multiple inheritance come from the different roles that we keep on playing all the time, for

example, let us think about just I have been regularly, I am getting regularly assisted in this

course by 3 teaching assistance (TAs) Himadri, Srijoni and Tanwi and so think about the

classes of students and teachers and TS and what will happen, we will have students, what is

the distinguishing property of a student? Why it is a key abstraction? Because, student study.

We have teachers, what is the distinguishing characteristics of the teachers, they should also

study but distinguishing characteristics of the teachers, they should also study, but

distinguishing character is a teach. What is a TA? The TA has to teach because she is a

teaching assistant but to be a teaching assistant to be a student, so a teaching assistant a TA is

kind of specialises from, it gets certain attributes certain properties from the students, certain

properties from the teacher.

So this one very direct example of multiple inheritance we will need and if you think little bit

more, you will find that you will need all different kinds of properties of rather power of

subclass, subclass TA to add, modify and hide methods. For example, TA can assistant the

codes, TA can evaluate assignments but TA cannot award the final grade, which teachers can,

so if I say TA is a teacher as I am saying here.

Then TA will inherit the method to be able to award grade to students which it has to hide so

but at the same time it will from the student it will get the lot of properties which will

possibly, it will possibly will be able to enjoy altogether, so this is a basic context of multiple

inheritance it is a, I would like to warn you this there is an another different example here

which you can make out by yourself.

But I would like to warn you multiple inheritance is one of the very difficult areas of design

because is not only easy to identify multiple inheritance there are lot of fundamental

theoretical conceptual issues in dealing with multiple inheritance. Some of them relate to that

if you inherit the same method the same behaviour from 2 different super classes then how

should you behave in the sub class and so on.

(Refer Slide Time: 24:53)

So there are different design principles relating to in terms of dealing with multiple

inheritance and we will talk about some of those when the time of actual email modelling

comes. Then next is hierarchal inheritance, which basically is when you have more than one

subclass specialising from one common super classes which is what we have already seen

quite a lot in terms of the vehicle example we just took.

(Refer Slide Time: 25:28)

Here I have shown another example based on mammals so this mammal is a most generalised

super class then we have cat, dog, horse, elephant all different subclasses, they in turn have

other subclasses so when we have this kind of inheritance structure we say we have

hierarchal inheritance, now in reality what happens is, you will not have, often you will not

have pure single inheritance or single multilevel inheritance or hierarchal inheritance or

multiple inheritance.

You will typically have a mixture of them and therefore often you will have a situation of

hybrid inheritance as you can see here, so in this hybrid inheritance, you can see here you

have a more pure form of hierarchical inheritance, here you have a more pure form of

multiple inheritance and if you look into this part of the structure then you have multilevel

inheritance.

So hybrid could mix up different kinds of inheritance structure in this and the reason in object

oriented design some on needs to understand the hierarchies and inherited structure is this is

one great tool which go a long way to restrict complexity of systems because as you can

understand that once a subclass can inherit a whole of a superclass with very minimal

changes additions and you know hiding then you have a great opportunity for use of code.

(Refer Slide Time: 27:04)

We have great point as to a how should module arise you have a great use of the whole notion

of abstraction that you have been working with. So a major consequence of hierarchy is these

different forms of inheritance that it results. So to summarise in this module, we conclude on

the major elements of object models, we had 4 of them, 2 were done earlier and here we have

talked about modularity and hierarchy.

Two of the other major elements that deal with modularity certainly has deals with the

separation of concern, the better separation of concern, you can do in terms of code

organisation, we have better modularity implementation and we talked about several

principles for that and hierarchy deals with the inheritance aspect of an object and these 2

together will go a long way supporting with abstraction and encapsulation in doing good

design of object oriented systems.

Now in the next module we will take up the minor elements which are not essential but often

turn out to be very useful elements to provide the actual related functionality of the system

that will be in module 10.

