
Object-Oriented Analysis and Design
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology-Kharagpur

Lecture – 14
Elements of the Object Model (Major): Modularity and Hierarchy

Welcome to module 09 of object oriented analysis and design. We have been discussing about elements

of object models. we have noted in the last module that there are 4 major elements of object models and

3 minor elements. Of the 4 major elements we have already discussed about abstraction and

encapsulation. We have seen that abstraction is widely used to identify the key concepts in the system

and it relates to primarily design formalization.

Whereas encapsulation has to deal more with the implementation aspects of the system which

encapsulates or packages the implementation and puts it the way from the public view giving only a

limited required view of contractual interface to the users and we have seen 2 different examples as to

how encapsulation and abstraction interplay between themselves.

(Refer Slide Time: 01:52)

Building on further, we will in this module take a look into the other 2 essential characteristics of object

models namely modularity and hierarchy.

(Refer Slide Time: 02:07)

This is the outline; we will present a quick recap and then discuss the specifics of modularity and

hierarchy.

(Refer Slide Time: 02:16)

So, this is just to remind you that these are the different elements of object models that we are

discussing in this series of models and we will now focus on modularity.

(Refer Slide Time: 02:28)

So, modularity has to do significantly in the way a program or the code of the software, the data of the

software, how it is organized. so modularity is about partitioning a program into individual components

and we want to do this we want to make modular designs so that we can again manage complexity. So

it is yet another aspect of system management which addresses the original set of issues we had raised

about software, about the inherent complexity of software.

And the inherent inability of human beings to deal with more than a few semantic elements in any

design or any implementation. A typical characteristic of a modular designs or module, modules

themselves would be that they compile separately doing cases, they could compile together and

obviously there is interconnections between the modules.

(Refer Slide Time: 03:50)

So, will start with an example so this is please do not get worried about the clutter about this diagram, it

is intentional. We are just trying to show that if you are dealing with the design of a machine learning

system then this is the kind of a different components that you need to deal with and these different sets

shown in different colors show the different models. So I will quickly take a walk around the modules.

(Refer Slide Time: 04:25)

So, one module is data transformation where what we need to do is in whatever form we are getting the

data for machine learning, we have to transform them, represent them into different standard forms of a

linear manifolds or vector manifolds and so on so all components relating to this transformation tasks

are put together in the data transformation module.

(Refer Slide Time: 04:54)

A second module or another module is structured prediction which talks about given a certain pattern of

data what can you, how can you infer a predictable model for that, we will often use Markov random

fields for that or different other ways of doing structured prediction. Again the specifics of this are in

the domain of machine learning so it is not expected that you will understand it that is also not the

requirement.

(Refer Slide Time: 05:25)

Am just trying to show that these are the different kinds of module that a complex system can have. We

will have a separate module for clustering which when we do not know given the data how many

different categories or sub categories or classes it belongs to, we perform clustering to decide what

is a good set of classes.

(Refer Slide Time: 05:46)

We will have a classification module which given the set of classes and given a test data can decide

which of the classes it does belong to using different machine learning algorithms

(Refer Slide Time: 05:59)

And then there is a regression module which checks based on the different test cases as to whether it

has been correctly classified or the classification has actually regressed in the there is some errors in the

classification.

(Refer Slide Time: 06:14)

And finally, all these different modules actually interplay between themselves so this particular area if

you see on different sides am showing the different modules that you that we have already shown, the

data transformation, the structure prediction, the clustering, classification, regression, so all of these are

the different modules that you have clubbed your code into but then this together becomes a system

when you have interconnection between modules.

So, when we talk about modularity one is grouping, partitioning the program code into interrelated

semantically interrelated set of a files and data. At the same time, there are certain interconnection parts

for example here if you if you look into all these different subcomponents their task is to basically read

the interactions between different modules and this will typically be the view of any complex system

when it is modularized.

This is just to give you a glimpse of the glimpse of what kind of the complexity the system will actually

involved and how modularization can reduce some of this complexity. So you can very well understand

that if you think back about the original system we just looked at a clutter, compared to that when you

take each and every module, it is much easier to handle that and this can again de go in an hierarchical

manner, a module can be again sub modularized into smaller modules and so on. And we will look into

some of those principles.

(Refer Slide Time: 08:01)

So, to set the target, there are certain specific objectives of modularization. So let us look into them one

by one. One is the decomposition that is it is we want to give the whole set of codes files we want to

organize them in terms of modules, in terms of related groups in a systematic manner so that what it

meant by systematic manner is we only put together those part of the program, of those part of the code

into one module which has some kind of well defined functionality.

We do not just do not just arbitrarily 100 program files; we will not arbitrarily put 17 of them into 1

module. but we will put them together in a way so that together they either represent a set of concrete

concepts, or they provide certain algorithmic functionality and so on. So modularity of decomposition

is a key area. The second is composablity that is as we divide the system into smaller modules, every

modules into sub modules and so on.

We should be able to reconstruct it back that is you should be able to take smaller modules and put

them together into a bigger module. So the way it will help is if we have similar functionality in two or

more various of the program, then we can have a single sub module which can be reused, composed

into other modules and increase the reusability. So modularity significantly increases the reusability if

you just want to think of in terms of conventional c programming that many of you may be familiar

with.

You will find that we often use standard library like you know that c uses standard library okay. And in

standard library what do you do? You hash include different standard library headers you say this is we

have stdio.h, we have hash include math.h, we have hash include stdlib.h and so on. now all of these

header files, necessarily have a set of function headers because we are talking about c programming so

there is no class but you can still see the explicit views of modularity, very organized use of modularity.

So what are we doing? Why have do we need to have all these different header files? Because I mean

what could have been the other alternative, why could I have had a standard library.h include all the

function headers, but we do not do that. So what we have done, we have done a specific decomposition

and composablity. So when we talk about stdio.h we have put together all those function headers like

printf headers, scanf header, fprintf header, fscanf header and so on which relates to some kind of input

output mechanism.

But when we will have to deal with different mathematical operations like computing the tangent of an

angle, the tan function or the half tan function, or the square root function, we will have a separate

header file which keeps them together. So the way it this will easily demonstrate that while

decomposing, all different standard header files of all different standard functions that you want to

provide through a c programmer, you do not provide them as flag.

You decompose them into functionally congruent these are these actually never interact also between

them. Printf does not interact with scanf, scanf does not interact with fprintf and certainly rtan does not

interact with sin but you still conceptually put them together because with that it becomes much easier

for the user to use that module. So the composablity becomes easier, user must build up a program all

that she needs to think of is am I doing a io here, then I must include stdio.h,

Am I doing something which is relating to say memory allocation and reallocation, I must use

standardlib.h and so on so forth. So, this is just a simple example relating to basic programming that

shows that modularity is key requirement, is a key tool in terms of organizing better in terms of this

providing good decomposition, good composability. And the consequence of that once you have been

able to do this well then the other objective that you make is modular understandability.

So, as I said that if I want to do input output, all that I will need to do is include stdio.h. so this is the

understandability that is I understand I had a semantic meaning for that module even though as I said

the different components of that module different functions will not interact between them but there is a

conceptual boundary which say that all input output operations would be here. So, I can understand the

module as a kind of unit which makes it easy to use and which makes it also easy to change in case I

need to make some changes.

The fourth objective is modular continuity. Modular continuity is little bit more in depth. What we want

to do is we want to divide the system into such modules so that if in future we need to make some

changes and changes can be because of different reasons for example the changes could be simple bug

fixes that there are some issues in the code and I need to fix that, correct that. The changes could be due

to change in specification; the changes could be due to changes in the business process and so on.

So I would like to we should be creating modules in a way so that when some changes required then

that change should not go across multiple different modules, the change should be limited to one

module or should be limited to very small number of modules so if the modularization is not very

proper, then changes will spill across different modules. For example if I had split the math.h set of

errors into two different modules or if I would have clubbed math.h with stdio.h then any change in the

numerical algorithm would compute different trigonometric functions which have spilled across

modules.

So this will reduce in a way, this will reduce what is most important is it to reduce the side effect that is

change of one module impacting the other and certainly related to that objective is modular protection

which say that errors should be localized that is if I come a error say I come across a divide by zero

error then I should be localized to math.h. if I come across a memory allocation failure error, it will be

limited to memory.h and so on.

So these are the typical objectives which should be kept in mind in performing a modularization of the

code but performing the modularization of the design that we are given to deal with.

(Refer Slide Time: 15:46)

Now certainly in life no lunch is free so when you engage in modularization try to meet this objective

then you often come across challenges. for example given a general system, it is not often easy to

decompose it in terms of smaller modules often it needs quite in depth study of the system,

understanding of that experience design and often the use of other elements of object models like

identifying what are the abstract concepts

What are the possible encapsulations even what is the hierarchy if something is existing and so on. so it

is not always an easy, trivial task. This is not always just that you decide on which files that you can put

in one module or the other. Even deciding which functions we put in different files ,which headers you

put in header files, which class definitions you put in different files, all these go in depth, in deciding

how well the modularization happen.

And keep in mind that if the modularization is arbitrary then often it turns out to be actually more

disastrous is often worse than not modularizing at all. Because you are drive bounded which are not

aligned with the design boundaries of abstraction and encapsulation that you are always be

emphasized. So modularization should follow the semantic grouping of common and interrelated

functionality.

So please note this points as it should follow the semantic grouping that meaning wise they should be

similar they should be interrelated and what should be interrelated common items common

functionalities and interrelated functionalities. Interrelated functionalities will make sure for example I

will again go back the example of stdio.h, think about the printf function so it is an out input output

function which c programmers would have use. So you have put it in the ma stdio.h.

Now there are functions which some of you may know some functions like write which can also be

used for input output but they are at a different level of detail. They do more like binary data grid and

so on. now if you put printf into one module, one header file and put read write into a different then

you will find that you will often have a lot of interaction across these two modules, because printf will

never get implemented by itself.

Printf will regularly use read write operations, write operations will use other kinds of input functions,

error functions called input and so on. there are functions called fwrite and so on. so it is the

commonality and interrelationship of functionality is a major tool by which you should be doing the

modularization.

(Refer Slide Time: 19:00)

In terms of challenges I have just tried to describe the some more systems, you can consider a

distributed system which has many processor and you have several messages going across, these are

processors, hundreds of different kinds of messages. Another question is the what should you

modularize. Should you modularize since every module must be as independent as possible you will

put every modules required message types, within that module, you can do that.

But if you do that then often you will have quite a poor design because now since every module has its

own message structure a user who has to deal with these messages will not be able to deal with them

without knowing in which module what structure exist. Documentation would become difficult, it will

become really difficult to maintain. So there are certain aspects like when you are putting them all

together then certainly you are kind of adhering to better encapsulation because you said that well this

kind of message relates to this module

So, let me put it inside that, so you are hiding everything. But too much of hiding could actually impact

the modularization lot more, it could backfire because now you do not know what are the different

messages that need to go across, what are the formats and so on. so you need to strike a balance

possibly strike a balance by doing a different modularization where you could identify that well since

there are several kinds of messages, so why not create a module which actually deals with messages

And provide interfaces which different modules can use based on what kind of messages they need. We

will see more of that but this is just a glimpse of what could be the possible challenges that could come

across.

(Refer Slide Time: 20:55)

So, in this background to keep through the objectives of modularization we often talked about

intelligent modularization that is these are some of the thumb rules rather or some of the basic

guidelines that you may follow to achieve the objectives better is one is

(Refer Slide Time: 21:13)

That is why I have just highlighted the key words in this, am sorry this got changed. the highlight

keywords that is grouped logically related abstraction. You already have abstraction on the system so in

a module you should typically now naturally one extreme is every abstraction you put into a different

module. That may give you a lot more fractured modularization which will have lot of interactions so

your module will be simple but you will have so much of interactions,

You just recall the example I showed in the machine learning system that the interaction part has to be

also manageable complexity. So instead of just putting every abstraction into separate module you will

try to group them into logically related abstractions. So abstractions of input output operations should

lead to one module, abstraction of mathematical modeling should lead to another module, abstraction

of system related operations should give you stdlib.h and so on.

And as you do that then what you try to achieve is minimize dependency amongst modules. So this is

should be now clear that if I logically group logical abstractions into module no then certainly I will

need to go across modules much less only when I go across modules only when I need to achieve a

higher level of functionality. And both of these logical groupings and minimization of dependency

across modules make every module simple.

And now to understand and that would be a key idea simplicity should be a key idea of modularization

because recall that we are why are we modularizing because we want to contain the complexity. The

complexity is too high and we want to make all we are doing all these to make things simpler

leveraging the notions, the vocabulary of the problem domain I will frequently have to go back to that

leveraging the abstraction that I have already created, leveraging the possible encapsulation that we

have.

And finally, the modules must be complete. Final but override of the intelligent modularization

principles is ease of change even though whatever do a design when we start doing a implementations

that organizing the code, we are confident that we are doing a correct job but experience shows that for

different limitations of the human mind .of the system and of the business scenario change has an

inevitable or unavoidable reality of software development of system design and implementation.

So ease of change must be always kept in mind that is we should organize the modules intelligently

enough so that some changes in one module should impact least number of other modules and so on.

(Refer Slide Time: 24:30)

So, with these principles we will regularly go ahead and look at different modules, there are some

references to the earlier examples, the hypotonic gardening system so suppose we want to build up an

automation system which we started discussing and certainly some of the key abstractions for that we

have seen include growing plant that is these are different strategies to be imbed by the system to grow

different varieties of plants.

The user interface so these are some of the key abstractions that you would already have from the

analysis of the abstraction of the system. So I will be quite logical to create modules for growing plan,

so in the growing plan module, you may have a growing plan for fruits, a growing plan for grains and

so on. it will be possibly good to put this all together and this is what will relate to have grouping the

interrelated abstractions together.

It will relate to simplicity, it will make sure that you have mu e is much easier to change because a

fruitgrowing plan change in fruit growing plan will impact possibly the general growing plans

strategies and so on. on the other hand if all the user interface functionalities that you have it will

certainly be better to put them together into a single separate module.

(Refer Slide Time: 25:57)

So, with this what we have seen is we have seen the introduction of modularity as a major element for

object models. We will stop here and next take up the hierarchy.

