
Object-Oriented Analysis and Design
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology-Kharagpur

Lecture - 10
Foundations of the Object Model - OOA, OOD and OOP

Welcome to module 7 of object-oriented analysis and design. In the last module, we took a quick

look into the evolution of programming languages, the programming paradigm and in the earlier

modules we have taken a look into the challenges of software development of modeling complex

systems and we analyze to understand a few common properties of complex systems.

From this module, onwards we would try to use both these backgrounds to slowly start defining

our object models which is the fundamental concept of staring to analyze and design something

in an object-oriented language. So, in this context the current module will provide the

foundations that talk about the foundations of the object model and or my main intention would

be to introduce the free basic terms that we will frequently use.

(Refer Slide Time: 01:20)

The notions of what is object oriented analysis, what is object oriented design often they are so

interrelated that they are referred together as object oriented analysis and design as is the title of

this course and we will get introduced to what is object oriented programming.

(Refer Slide Time: 01:53)

The outline is available on the left.

(Refer Slide Time: 01:55)

So, the object models, the foundation of object models certainly is in object oriented in analysis

and design. Please note that this whole design, analysis and design paradigm methodology has

been a or represents an evolutionary development and not a revolutionary one. What it means is

this is not a single part baking part or a part breaking approach by which we will quickly create a

completely new solution.

This is not coming and showing you that any set of numbers can be sorted in login time without

any extra memory. So, we will solve that problem with a revolutionary solution but object-

oriented analysis and design is typically an evolutionary development which means that in the

process itself the approach is to start small, start something, start elementary and then evolve the

system over a series of transitions into the final target of the system.

We have to keep that in mind and that is for the several different reasons that I have highlighted

in the earlier modules, going in an iterative evolutionary refinement form to go from simple to

little bit more complex to little more complex to further complex and so on and the final system

is the only way to keep things under our control, to keep it within the human capacity of

handling and manage the complexity to deliver a good working software.

So obviously with algorithmic decomposition alone, only limited amount of complexity can be

handled we have discussed this at the end. So, we turn to object oriented decomposition. If you

historically look at, we just took one this course in terms of evolution of programming languages

in parallel similar dispose, you could study but the slot of time want of time might want to cover

them. All in the historical perspective but if you track in a similar way the object-oriented

analysis.

And design is the direct fall out of advances in computer architecture which has made it possible

that different object based on object oriented feature can be brought into the computing system,

advances in programming languages which we have already discussed. Advances in

programming methodologies like framework based programming which also we have

discussed, advances in database models which has given us really new powerful ways to model

databases.

And this is growing; this is still getting much bigger than where our current course will stop. We

have now databases which are called say no, no sql database, unstructured data database. So that

is a regular evolutionary process that is going on even research in artificial intelligence which is

shown as that how much the reasoning can be structured, how much the reasoning can be

automated given advances in philosophy.

And cognitive sciences, understanding of our own thinking process, all contributed towards the

emergence of object oriented paradigms.

(Refer Slide Time: 05:45)

So, in that context we start discussing about the three basic approaches that we need to do. One is

the object-oriented analysis. First thing you do is object oriented analysis, the method of analysis

that examines requirements, so please this is a very simple statement but please understand it

very carefully. It examines requirements from the perspectives of the classes and objects found in

the vocabulary of the problem domain.

So first we are doing a process of, we are doing an activity of engineering. So, what is the first

question you need to ask? You certainly need to ask is to what is my input and what is my output.

Am doing an activity, so what I am given and what I had to deliver. So, if I look into object

oriented analysis or the analysis phase then what we are given is the requirement. That is

somebody my customer needs the system to be built.

And the customer has expressed that need in terms of possibly natural language descriptions to

me. Please consider am sure you have had an opportunity to take a look into the tutorial that we

created for the first week. The tutorial on leave management system of an organization where

you saw two of our volunteers Srijoni and Tanwi behaving as customers and vendor to discuss

about what leave management system is required.

That requirement so kind of you can say that the requirement is to specify in terms of this video.

So, this itself could be your input. Of course, we will not get you started with such a vague

abstract place. We have also provided you a 2 page, 2, 3-page kind of document which gives you

some more statements about further requirements. And but that whole thing whether the video or

the diagrams or the text are all kind of different vaguely specified, incompletely specified

possibly inconsistent.

Requirements that the customer has not the customer herself may not be clear as to whether 100

percent of the requirements are really needed, whether they are really can be done and so and so.

So, object oriented analysis is a process is a practice that you will take up in view of this input to

actually create a very basic level of identification for classes and objects.

(Refer Slide Time: 08:45)

And while you do that, we try to use the vocabulary of the domain that is the vocabulary of the

problem domain is whatever is said in terms of the problem that you are given to solve, whatever

you said in terms of the requirements documents, the requirement video, diagrams and so on. so,

the typical stages could give based on the first thing you would like to do is to identify your

objects.

So, your system leave management system we have heard so what we were told. We were told

that the organization has employees and they need a system to manage the leave of their

employees. We were told that the organization, the employees in the organization are not of the

same kind. There are 3 kinds of employees, executives, leads and managers and we were told

that the leave is also not of one kind, the variety of leaves, causal leaves, earn leave.

And so, on and the if you if you go through the 2 pages of the document, you will find several

different rules of who can how can who and one apply for a leave and how can a leave granted,

how much leave you are eligible for, what are the conditions for different leaves and so on are

documented. Now the first task that we know that we are looking at an object-oriented

decomposition of this problem. So, the first things we need to learn are what are the objects.

(Refer Slide Time: 10:15)

So, some of the good cases that we can make is certainly I can say that given this employee is an

object. Given this leave could be an object. Like these are good candidates so that when you do

identification you saw the employee is an object. You say leave is an object. But what about

executive? What about lead? What about manager? These are all possible candidates for objects.

Similarly, what about a causal leave, how about an earn leave and so on.

So, this identification process can lead you to identification of objects could lead you to several

sides, different possible objects. There could be symmetrically different object also for example

if you read in the specification that you learned some places saying that if a leave is approved

then an email is sent to whoever has applied. So, email also is a concept, you can say email is an

object. So, there could be several objects identified.

And as you identify different objects, keep them try to see if you can have certain structure

between them that is object of all these different objects that you have here are they really

distinct objects are they are kind of interrelated and we can say that one commonality that we can

see that these 3 objects are all of have something in common with the object employee. Again at

least say an executive is an employee.

So, anything that applies to an employee in general employee has an employee code, get his

salary, has a designation, reports to someone all of these will apply to executive to leave manager

and so on. Similarly leave different kinds of leave, there could be several others, or leave anyway

that is when you get paid possibly and but you do not come to office or you do not work. So, the

next to identifying the objects is picking up a wrong color is identifying structures.

You try to see what structures these objects may have. Subsequent to that certainly you will need

to look at what are the how are a concept like an employee or a concept like a leave it is an

abstract concept, it is an abstraction right. It has a notion but finally the computing system, your

final target is computing system so you will not be able to just keep a nation, you will have to get

to that notion through a set of properties that the object can have that that concept can have, that

abstraction can have.

(Refer Slide Time: 13:42)

So, will start saying that well this executive has a name, an executive has an id, an executive has

an address same for the lead, may be same for the employee, leave has a duration, leave has a

start date and so and so forth. It must have an end date, etc. so you start to really understands the

objects, you start identifying attributes so these are the different attributes. These are the

different attributes that you start identifying.

Then you ask that well I know now I know that there are different objects, I know that there are

certain structure between them. I know that there are attributes for these objects, but for a system

this object must be interactive, the objects must be doing certain things together, certain things

differently, must be sending messages between them and so on. So, you start working on the

associations. So, you say that an executive will request this is barely visible so I will use a

different color again.

As an executive can request for a leave. I can say that a manager can approve some leave. So,

there are different these are different ways that the objects or structures that you have identified

can be interrelated, can be associated. So, these will lead to different, these will lead to different

associations that we can have. And finally, to put all things together, you will now have to define

what are the possible services that the each and every object has to provide.

What are the services that the system as a whole has to provide for making this useful, for

making this confirm to the requirement specification that you have been given with? And in this

process, see this is not a flat one-way process and while I just took the LMS example and quickly

review some dirty I mean back of the envelope kind of reasoning, please do not get scared, we

will take through this in a very structured way in the next couple of modules.

Idea here is just to illustrate that this is the process of analysis that you get started with and as a

as I mentioned that whole thing is an evaluation evolutionary process, it is not that you will be

able to immediately come to all the objects get all the structures identify all the attributes and

they have the associations correct, services correctly defined have the whole design. You will do

something scratch. Then we will go forward and do certain steps of the object-oriented design.

(Refer Slide Time: 17:27)

And find that well there are gaps in the design which you cannot fill up so this kind of that is the

evolutionary iterative process so you do object oriented analysis. So, you this is where you got

the requirement, you have done the analysis. So, we have objects you have attributes, you have

associations and so on. And then you do more of design, we will see what design will generate

and in the process, we will find that okay things ha have not been completely done, there are

contradictions, there are incompleteness.

So, you come back and do the OOA again. You keep on doing this repeatedly and that is the

evolutionary iterative process for which you try to perfect your analysis but whenever you are

into an analysis what you are trying to do is every time you are into analysis, you either go back

to the requirements document or to the requirement video of Tanwi and Srijoni or to the

diagrams or even to the things are not clear in those your setup specific meetings with the clients.

With the customers, with the interface and then ask questions. Well this is specified how do I

design in the system. That this process is known as an object-oriented analysis or the analysis

process of the exercise.

(Refer Slide Time: 18:39)

This is the first step. Next comes the object-oriented design which builds up on the analysis

output that you are generating and it is specifically now talks of object oriented decomposition.

So, he will find that it is though for the purpose of sake of presentation and understanding am

presenting the analysis and design as if as completely separate phases in practice they will often

be very closely related.

You do not just keep on identifying objects and identifying attributes or identifying structures

and keep them one side and then you come and do object oriented decomposition. It is kind of

you do them together. You identify objects, put them in the decomposition model, identify

attributes put them in a model, you identify services required, put them in the model, those are

the messages that is the whole process of regular process of decomposition that will happen.

The second part of the other characteristic activity of object oriented design is you start

generating a whole lot of different models of the system. That is, you start looking at the system

from multiple angles through multiple glasses and there is no very specific exhaustive list of

models that you will provide, that will specify. some of the models are generic, you will be done

for all kinds of system and some of the models are specific to certain types of systems.

But it is typical that you will do logical models. Logical models are the basic fundamental

object-oriented model which identify, which represent the class and object structures. The class

structure if you recall, the reference to the canonical form, the class structure is which gives us

the commonality of the behavior, the hierarchy of specializations, the hierarchy of abstraction.

And the object structure is the compositional behavior which show that the how objects are built

up, how smaller objects in turn are built of even small objects and small.

So, these are basically the logical models that exist in the problem domain. The reason there

could logical models is the fact that these models are completely or significantly dependent only

on the problem domain and the requirements that you have given to solve and not so much on the

actual target system on which you implemented, actual target system that you built, neither the

computer or the architecture on which you are building the system, nor the actual system that

you build.

So, the second set of models that we will typically build are called the physical models because

they are called physical because that is how your system that you are const or constructing or

manifesting that it will show that these are the modules. So, in terms of a typical software system

that we are doing, the modules are certainly different. collection of may be source files, headers,

libraries together independent compilation

You may be dynamic libraries and so on which together does something meaningful as a

subsystem. So, in terms of a physical model, a module could be your email subsystem. in terms

of a physical model, your module could be employee management system for the leave part and

similarly the process architecture or the software architecture of the whole system which could

include the interconnect with the frameworks which could include how your different modules

interact between them.

How really your messages are sent? How they responded to? What happens if your situation gets

into an exception condition and so on. so, these are the requirements of the physical model and

certainly we will talk about several behavioral models which have static and dynamic behaviors

that is for example if I talk about the LMS, a dynamic behavior that I need to know is when an

employee applies for a leave what happens in terms of the timeline what happens.

How will the manager of the employee who supports to look into the leave and to who regret it,

how will that that manager gets to know it. And when the manager gets to know it, what is the

timeline through which, within which the manager will respond. And once the manager

responded how will the original employee who had requested for the leave will get to know. So

that is kind of dynamics of the system which says it is not only enough that you have leave as

object.

Or executive as object or not enough to have messages to apply for leave or approve leave as a

service but you also need to have a clear idea about the order in which these things will have to

happen the many of them have real time constraints, for example I apply for a leave 3 day down

the line say today is a certain day x and I apply for a leave I mean Monday let us say, and am

applying for a leave on Thursday.

Now certainly whether I get to proceed on leave or it is regretted, I must get to know it before

Thursday otherwise I cannot take a decision. The system becomes inconsistent and if you if you

this is a quick example of if you go back to discussion we had between Tanwi and Srijoni and the

document that they subsequently produced will find that this question is not answered. What is

the timeline within which a leave must be reacted to?

These are a part of the behavioral model that needs to be. So, in terms of the object-oriented

design, we basically refine on our finding from object oriented analysis and try to start creating

these models. The basic difference between these 2 being that the analysis is repeatedly looking

into the requirements and bringing out stock in terms of classes, objects, interactions, messages

and object-oriented design is trying to put in the terms of or actual paradigm.

(Refer Slide Time: 25:25)

So, this is just for a recap, I will not go over this example once again. We had discussed it earlier

as well. So am just making a reference to this that we have talked about updating the contents of

a master file and this is what you will get to in algorithmic decomposition.

(Refer Slide Time: 25:45)

And this is what you get to in terms of an object-oriented decomposition and you can see that

naturally the process of analysis must have identified these objects, these objects and because it

is somewhat vaguely specified in terms of the problem domain but this come from the

vocabulary of the problem domain. The problem domain talks about a master file, talks about a

file of updates and so on and based on that this kind of a diagram is getting created in terms of

how the objects will interact between themselves and that is the core of the object-oriented

design process.

(Refer Slide Time: 26:30)

Naturally all those different models that object-oriented design needs to deal with have to be

expressed in some concrete terms and we will find that significant part of our course is dedicated

to learning for, learning how to express these models which so far even though we are saying

that this is a concrete object, this is a concrete attribute, these are messages, services, operations

and so on.

We need a mechanism to represent all these logical models, physical models, behavioral models

and so on in some well defined, well structured language and we will talk about that language

which is called the UML or the unified modeling language. So, with this we will we have taken a

look into the object-oriented analysis approach and the basic object-oriented design paradigm.

We will now see how these 2 gets engaged into the final system through that object-oriented

programming.

