
Object-Oriented Analysis and Design
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 01
Challenges in Software Engineering

Welcome to the moocs course on object-oriented analysis and design. This is module 1.

(Refer Slide Time: 0:46)

Here, we will start by setting the background and creating the motivation for, why is it required to

study understand object-orientation? How does it plea with analysis of real life problems and how it

can be effectively used in design of complex software. Certainly you all are familiar with object-

oriented programming; at least I assume that you know glimpses of that. You aware that C++ or Java

are some of the most popular object-oriented programming languages.

Now the fact of the matter is that while you design, implement and maintain a complex software,

certainly using a object-oriented programming language turns out to be of great help but merely the use

of a object-oriented programming language, that a programming language which supports definition,

creation, management, destruction of objects, merely the use of that language as a programming

vehicle does not solve all the issues of software system.

And in reality, much of the problems that software systems encounter or the developers and as well as a

users of the software systems encounter and not just limited to the programming code. Several actually

significant part of the problems start at the specification of the problem itself, where the user talks to

the developer and wants to express that this is what I want as a software. Now in some cases, users will

directly do that if you are have an enterprise and you are trying to create,

Get a system created by a software vendor, say to manage your employees, to manage the leaves that

your employees take, you will directly talk to the vendor and get a system created for your

organizational use or it could be that it is a generic software product where several independent

unknown users have talked to several parts of the developers to express their requirements. And all

those requirements had been canned into a complete set, a consistent set to develop the product.

An example could be Microsoft word, excel, this office (())(03:32) and mail clients, browsers, they

have not been developed for any specific needs of any specific organization or individual. They have

been created for generic use by a large number of individuals, groups and organization and therefore

we call them the products, irrespective of which kind of software system. We talk about the

specification, design, analysis and finally implementation, maintenance, preservation are all critical

issues.

That needs to be effectively handled, particularly for a industrial strength large scale software. So you

would be familiar that this whole exercise is a prescient in the name of software engineering like civil

engineers, construct, mechanical engineers construct automobiles, machines. Electrical engineers

construct power plants, air conditioners, fans, software engineers are supposed to build software and

that discipline is known as software engineering. So to understand the requirements.

Or rather more the motivation of why we need to engage the object-oriented analysis and design, we

will start by taking a brief look into, what are the challenges that software engineering or software

engineers face, that will be the main state of our current module.

(Refer Slide Time: 05:09)

So to specify, the specific objective would be to understand why software is still developed and not

constructed. Please note these two words development and construction. If you tell into any field of

engineering other than software, you will typically find that the word used at the, to define the activity

to define the product is called constructions. Buildings are constructing, power plants are constructing

but software is typically developed, not constructed.

So we will take a little bit of round in terms of why this difference in semantics. We will try to

understand why software projects fail and take a glimpse into some of the remedial measures and

finally, we will end the module with the KYC, that is know your course. That is what we are going to

cover in this whole.

(Refer Slide Time: 06:10)

The outline would be is software. What is software engineering? Or rather is software really

engineering and why projects fail and so on. And the convention we will typically follow in all the

modules is during the presentation, you will be able to see the outline of the module on the left hand

side of every slide and the current subsection in the outline that is being discussed in a given slide will

be highlighted on the left.

(Refer Slide Time: 06:43)

So this is the outline that you will have. So now let us look at software engineering, so the order of the

day is to refer to the activity of the software development as software engineering. I start by raising a

question that is it fair to really pronounce proclaim that we are doing software engineering? If you are

doing software engineering then we must be able to construct software as civil engineers build bridges.

(Refer Slide Time: 07:12)

So what is engineering? Engineering in very simple terms can be look at from different angles but the

core concept is, it is a scale of construction. Engineering also deals with the ability to manage

complexity, what is the difference between science, theory and engineering? The science tells us the

natural laws, principles, mathematics that govern, how systems will behave. We turn them into

engineering when we add utility to what we do one or more people one or more organizations get

benefited.

And the second very important factor is we create something which did not exist and in the whole

process we really need to learn engineering because there is a complexity to handle if things are small,

simple then you do not need to be an engineer. You can just want to analyze as you throw a ball and

want to hit a target, what is the force with which you will throw the ball and hit the target. You can do

that from your study of physics by using Newton’s law of motion.

But when you want to do that with by firing a missile which has to go over 5000 kilometers and still hit

a building at right point, you need to do engineering. Both are actually hitting a target over a distance

but what is different in case of missile is, the complexity is very different. So when we talk about

engineering we basically talk about how to manage complexity and that the core skill of an engineer is

to learn how to what is the complexity and how to handle it.

So just to take a glimpse we will take a quick tour this is more of a story telling a quick tour into some

of the common fields of engineering and see how they have evolved.

(Refer Slide Time: 09:22)

So we will start with this 4 different domains the bridges the surgery aero planes and certainly

software.

(Refer Slide Time: 09:31)

So if you look into bridges, this is one of the earliest constructions that the human civilization had to do

from time immemorial we have been constructing bridges, first with wood, stone, then iron, steel,

glass, concrete bridges and so on and by now if you are given to construct a bridge then we do not

accept this outcome that the bridge may fall that the construction may not succeed. If I construct a

flyover I would not expect the flyover to fall over. Let us not talk about incidents in Delhi and Kolkatta

that we have seen in last couple of hours.

That is faults in engineering but the civil engineering knowledge guarantees that the bridges will not

fall. So constructing a bridge is different from innovating a bridge. We will say we are innovating on a

bridge if we are experimenting a new material, we have seen bridges with iron, steel, concrete but then

if you look at the Google for Grand Canyon, you will find bridges which are completely in glass. So

when civil engineers sit down and find out how a bridge can be constructed completely with glass.

And experimenting or the innovating a bridge but when they are actual engineers and constructing a

bridge then they are working with established metrics standards proof and processes so that is there is

no innovation particularly and the process must succeed.

(Refer Slide Time: 11:17)

The same story will reveal itself in other fields, just consider medical surgery. Health naturally has been

a issue of concern again from time immemorial and as is documented that surgery and the act of

barbers were considered equivalent. Prior to 18th century you had to cut the human body and do

something it was declared quackery by 1900 but people slowly, the doctors or surgeons started

perfecting on their surgery but most patients did not survive because of the injury infection.

So we learnt how to manage infection in the late 1800s, now if you look into the way the surgery is

done every surgery follows the strict protocol. The protocol is nationally or internationally be

established proven and the doctor and the team has to specifically follow the protocols to ensure that

the surgeries succeeds, the infection is not propagated to the patient and so on and that is the reason that

surgery today has become so success. So that is also a kind of engineering that we see.

(Refer Slide Time: 12:41)

And you can see that the success rate is quite high and without that of course we would be very scared

to go to the surgeons. The third domain is aero planes many of us is certainly love flying and again the

attempt started at around 400 BC with Chinese trying to flying kite and aspiring that humans could also

fly. For centuries people has tried to fly as birds with disastrous effects many people have lost their

lives.

There have been different means of flying, steam powered, hot air gliding for single man, engine

powered and so on. Till about little over a 100 years back the wright brothers finally made the today’s

prototype of aero planes and they could fly again if you look at how the aero planes are manufactured

how they are flown is strictly regulated governed by proven practices, standards and if those standards

are not adhered to then the aero plane will not or the aircraft will not be allowed to fly the pilot will not

be able to take the seat and so on.

And that gives us the comfort the guarantee that if I fly in an aircraft then I will reach the destination

safely. So in all of these fields the underlined factor is the the confidence or the surety or the guarantee

of the success is very very very high and often when things go wrong when things fail they are they fail

either because some human being has made a mistake or many several human beings have made some

mistake or there is some intentional wrong doing.

(Refer Slide Time: 14:27)

In contrast let us look at software development I love to call it a part of problem solving the vision for

computing mechanical, computing, automated computing started in early 1800 with Charles Babbage

and Adalh and so on but incidentally there was not much development for over a hundred years

afterwards. The first significant step towards software algorithms and software systems happened in the

1930s with the 2 seminal works, 1 by Kurt Godel’s incompleteness theorem and alan turing in turing

machines many of you have been heard of this.

So if you look at then software is not of 100 years old so its its compared to other fields of engineering

its very very nascent, very very new and therefore it has not got a time really prove its processes, setup,

its standards and make sure that the success will always be at the end of the route, of course we see a

lot of developments happening very fast developments machines are expanding, they are getting faster

more powerful, lot of machines yet the software delivered successfully we all understand that it is

not.

And let me for the sake of being formal in this course define what I mean by the successful delivery of

the software it means primarily 4 factors that the project is completed one time. As it was planned there

is no extension of the project, it is completed within budget that is there is overshoot of funds, all

features that we have promised are completed. It is not that I will do it on time within budget and

implement only 50% of the functionality that I wanted and finally it must be working software that is it

should be failure free fault free.

(Refer Slide Time: 16:24)

Now in this background if you look at some of the recent studies these I have picked up from the moses

governance, these are 5 years to absolutely recent studies which show that more than 30% of the

software projects fail and these this statistics also taken for really large projects if you take into medium

size projects, the success rate will be low so that is quite alarming.

(Refer Slide Time: 16:51)

And this is another data which is very very recent, couple of days back which show that over the last

decade 2006 to 2016 again, what are the different number of large projects that have failed. So here this

bubbles this circles show the kind of budget that that particular software had. So the selected one that

you can see here this one is actually 12.7 billion pound project which had been dominated by the UK

government little around the middle of 2011.

And this show that there is this I mean irrespective of which region of the world you are talking of

there are series of large to very large to huge software projects, which are failing causing several

damages to property loss of money and effort and resources so that that is the basic alarm point.

(Refer Slide Time: 17:58)

So we has tried to we will talk about this lot more but here in the in this introductory part I will just

quickly try to highlight why software projects fail that can be one line answer. The complexity is the

culprit this complexity of several dimensions in software development. So some of them you can you

can very quickly understand is the change of requirement when you start developing the software you

are told something.

And then as you go through the development the customer would repeatedly come back to you and say

that I want something different. Now is it that the customer is not a smart person is it that the customer

is not being truthful to you? No please do not misunderstand the customer. The customer is changing

the requirement because the customer originally did not know what she wanted she had only had a

vague idea. And as you start building the software you show the prototype you show the design you

show the first alpha version.

The customer gets more and more ideas, the business environment change, the condition change,

processes are really changing. So one complexity big part of complexity come from the change of

requirements, the different complexity comes from change from technology, software works on system,

works on hardware, works on network components, works on different operating systems, third party

systems and so on.

Over the period of your development if it is 1 year, 2 years the target systems that started working with

that system itself evolves and the new system is around this. When you started it was windows 8.1, by

the time you are in the middle of the project its windows 10, things have changed. The things may

change in terms of hardware so being able to adapt to those adds a new complexity to those projects

and there is a several comp severe complexity from people.

Unlike most other fields of engineering where the process of construction itself can is significantly

automated. Here in software the process of construction has automation aid but its finally people who

develop software, who write the code, so introduction of people as you will all understand are complex.

2 people have certain kind of interaction, when you put 4 people you get 4, say 2, 4 choose 2 kind of

interactions and you have more and more people more and more groups more and more organizations

more and more distributed development teams across geographies and so on introduction gets really

complex.

And people are some 1 factor in the whole software industry which have an unpredictable behavior,

you may everybody have certain uncertainty in terms of how you will behave today and how you will

behave tomorrow. We say am in a not in a right mood, I may not be in the 100% fitness and so and so.

Complexities in software development come from all of this different dimensions this is not an

exhaustive list. We will talk little bit more about of the software complexity in the next module but this

is just to give you glimpse in terms of why software projects fail and we will have to live with that.

(Refer Slide Time: 21:21)

So the question the more question is, is software engineering is like manufacturing where your have

proven process and you just make a cell phone or it is like designing a manufacturing plant or like

making a cell phone. So these are 2 different aspects 1 is when somebody started deciding that or

dreaming that there should be cell phones, cellular phones which should be usable anywhere. To the

point when today you start making Samsung galaxy phone, iphones and so on.

The scenarios these 2 scenarios are different and for your statistics it took over 37 years to make

commercial cell phones, so now the manufacturing process is predictive. It must be predictive, we must

be able to measure and control quality as well as quantity but designing the manufacturing is a creative

innovative process, interestingly most software development is continuously innovative process rather

than predictive manufacturing. So that is what makes it difficult to view software building software

development as a construction process because it does not have the reliability productivity of the

manufacturing of construction.

It requires great deal of innovation interaction communication and all those factors impact the success

of the projects. So we have a long way to go from the status of software development to the status of

software construction.

(Refer Slide Time: 22:52)

We look forward to a day when like civil engineers, electrical engineers will be able to say that we have

constructed a software and if you have constructed a software, it will work the process will predictable

quality, will be predictable quantum, will be predictable cost, will be predictable and we will adhered to

all of that. The present state of the art says that this transition of art is structured analysis modeling

design and implementation.

We will slowly understand through this course what these terms mean in depth and it also needs that we

are we can adhere to good practices, if you look into any of the streams of engineering there is a large

volume of handbooks and standard data and practices which the engineers must follow that. That is the

code of conduct I mean, u just cannot evolve or just deviate from that software engineers are still not up

to it. So we are still struggling even to follow the coding guidelines in programs.

So the fact of the matter is that object-oriented analysis and design is a precursor to achieving both

these major tasks which will take us forward somewhat closer to software construction than the state of

development that we are in and that is the main motivation of attending discussing this course.

(Refer Slide Time: 24:25)

So before I close this module I quickly take a look into knowing your course the course outline. We

will talk about software complexity, understanding the challenges that OOAD can address, will discuss

about object models how to define the primitives of the object-oriented paradigm, will talk about

classes and objects in terms of bringing in the broader perspective of modeling and we will talk about

how with all these definitions and background of theory

We will actually do hands on exercise and give you concrete principles in terms of how you can really

identify what are the approaches to identify objects and how to analyze them how to design based on

them. And in this whole process, we will start using it language a graphical language which is kind of a

de facto standard to express object-oriented systems today known as a unified modeling language and

for 3 weeks we will learn this language we will take several examples in that language.

And will show you exactly how to use this, how to throw up in the lingua franca of object-oriented

community, finally before we end we try to discuss and make you work through some of the case

studies where OOAD will be applied to different contexts.

(Refer Slide Time: 25:58)

This is the text books just to there are several books in object-oriented analysis design uml and so on

just to keep you focused and certainly I would like to recommend you to follow this book as a text

book. This is certainly in whatever I have seen this is the best book on this topic written by several

stalwarts sphere added by Grady Booch during a verdict and he is with IBM now and please follow this

book. This has most of the materials that we will discuss is will be borrowed from this book and also

the whole discussion of UML has good summary in this book and if you follow this am sure you will

find this course quite easy to go.

(Refer Slide Time: 26:52)

These are some of the examples that we will try to follow all through this course are the major part of

the course, we will use a running example. So while we discuss about different points, we will take

glimpses from one running example about a leave management system of an organization. So very

soon we will introduce you to the general notion of the system, what does an organization think about

leave management, what is required and then we will repeatedly use that side to side, we will have

examples from Booch’s book.

Will have a separate running examples in the assignments that you will do that is an assignment

management system where the assignments that students do are managed through that system beside

we have Booch’s examples from Booch’s book and for complete workout we will have couple of

different example systems or postal management story management in a newspaper house car

management for a rental car company and some of the Booch’s OOAD examples.

(Refer Slide Time: 27:57)

Here am your instructor as you know so my contact is given here and am assisted by 3, Tanwi Mallick,

Srijoni Majumdar and Himadri Bhuyan. So they will be accessible on these emails and phone numbers

in case you need.

(Refer Slide Time: 28:18)

So we will conclude, summarize that software development is closer to development, that is than to

construction. This is what we have seen through the simple discussion. We have also observed that

software projects fails due to complexity due to regular need of change and we have noted and this is

what we will demonstrate through the course that OOAD will take software from development to

construction over a period of time.

