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Kmeans Clustering 

 

Welcome to today’s class. Today we will talk about a particular clustering algorithm. In 

the last class we discussed about the various types of clustering outputs. 
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We mentioned partitioning as one of the methods of clustering. Today we will look at a 

partitioning based algorithm specifically the K-means algorithm. In this algorithm we are 

given k and we have to produce k clusters. So, k is given to us and we are given a set of 

objects or instances, let us call it x comprising of m objects x 1, x 2, x n. And each 

object, let us assume is described in terms of n features. We can write that x i, can be 

written in terms of the n features x i 1, x i 2, up to x i n. 

So now, what we have to do is we have to output k clusters, so S the set of clusters 

comprising of S 1, S 2, S k. In this particular clustering algorithm the clusters that we 

output will form a partition of the objects, that is each part cluster is disjoined and 

together they cover the entire set of objects. And each cluster S i is represented by the 

cluster center, let us call it mu i. So, mu i it notes the parameter with respect to the 

cluster s i.  



Now we have to find k clusters, and what could be our criteria for choosing the clusters. 

We want to find the clusters so that it can optimize some chosen criteria. One possible 

optimization criteria is the within clusters sum of square distance. We mention that a 

cluster is such that objects within a cluster are similar to each other. Objects belonging to 

different clusters are different from each other. So, one possible optimization criteria is 

Within Cluster Sum of Squares distance, which we can write as WCSS. Which can be 

computed as, we will right this later. 

So, given a particular set of clusters the within clusters sum of distance is obtained as 

sum over i equal to 1 to k where k is the number of clusters, then summation x belongs to 

S i. For all objects belonging to S i, we find x i minus mu i also. We look at each of the k 

clusters for one cluster we look at all the objects in the cluster and find its distance from 

the cluster set. So, some of the square distance for all the elements in this clusters 

summed over all the clusters gives me the within cluster sum of square. Now for a given 

set of cluster we can compute this. We want that set of clusters for which this is 

minimized. So what we want is, find out that set of clusters for which this quantity is 

minimized. 

Now finding a set of clusters which exactly minimizes these criteria is a hard problem. 

So what we do is that, we will describe a simple heuristic algorithm called K-means 

algorithm which is designed by Macqueen in 1967. K-means was proposed by Macqueen 

1967 and this is a heuristic algorithm, which tries to come up with the set of clusters that 

tries to minimize this within clusters some of squares distance even though it may not be 

the exact minimum. Now let us describe the K-means algorithm.  
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In the K-means algorithm what we do is that here given k and we are given the set of 

objects x. So, assuming that we have two features we have different points representing 

the objects. And suppose we are given k equal to 3. So this is x these points are x and 

suppose we are given k equal to 3. And we need to find a set of 3 clusters. So, what we 

do in K-means algorithm is we identify randomly k cluster centers. We choose k of the 

data points, let us we choose this point, this point, this point, and this point. We 

randomly pick up 3 of the points and assign them as the cluster center or cluster seats. 



After we have assigned that now what we do is that we look at each of the points and 

assign them to the closest cluster. So, this point gets assign to this one, this gets assigned 

to this one, this gets assigned to this one, this point gets assigned here, this gets assigned 

here, this gets assigned here, this gets assigned here, this gets assigned here. We 

randomly pick up 3 seats and assign each of the data points to the closest seat. After we 

have done that now these have gone to the same seats, so we now take these points and 

recomputed the cluster centers. Suppose, the new cluster center of these three points are 

found here, suppose the new center of these points is found here, and the new center of 

this point is found here. 

Now on the second detraction, we take these as the cluster centers and repeat the process. 

That is now we again we look at the points and find out which cluster it will be, they will 

get assigned too. For example, now it may be possible that this is the assignment. Now 

based on the new cluster centers we again try to reassign the points to the clusters and we 

continue this process. And we continue until the conversions criteria are met. 

So, the algorithm is very simple given k we randomly choose k data points to be the 

initial cluster centers. We assign each data point to the closest cluster center. We re-

computed the cluster centers using the current cluster memberships. And, if the 

convergent criteria are not met go to two we will soon see what type of convergent 

criteria we can look at. This example also illustrates we randomly choose these two 

points as seats based on that we assign points to cluster seats and then re-compute the 

cluster centers and this process is continued. 
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So, when do we stop? We can stop when we reach a situation when between to iterations 

the cluster centers do not change. That is, there is no reassignment of points to the 

different clusters. We can stop if there is no change in the mean, or very little decrease in 

the sum of square errors. So, these are the possibilities under which we can stop. 

Now this algorithm, we can show that within cluster the sum of squares distance will go 

on decreasing from iteration to iteration. And this process is bound to convert, because 

this is going on decreasing. So, this process is bound to convert. This is the converging 

process it will converge to local minima of within cluster sum of square distance which 

may or may not meet the global (Refer Time: 11:28). 
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This is an illustration of the K-means algorithm on a particular data set, on this data set 

of the black points carried over for 9 iterations. In the first iteration, the red blue and 

green are chosen as cluster centers. As a result this is the assignments of the points and 

based on this assignment it shows the new cluster centers iteration 2. Iteration 3 these are 

the cluster centers. Iteration 4, 5 and 9, and then we see that it has converged. This is an 

example of the K-means algorithm applied. 
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Now, when we use the K-means algorithm we have to choose a measure of similarity or 

a measure of distance or dissimilarity. Now there are different distance measures that one 

could use, most of you will be familiar to the Euclidean Distance. 
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So, Euclidean distance is the sum of the squares. The Euclidean distance is given by x i s 

minus x j s root over, if there are k clusters for each clusters it will look at the points that 

is belonging to that cluster and the sum of square distance between the points. So, this is 

what you are familiar with. 

Another variation of the Euclidean distance function that one can use is the Manhattan 

distance, which is simply sigma k x i s minus x j s. In fact, these two and something 

similar can be brought under Minkowski measures. Minkowski family of distance 

measure is a more general measure of distance between two points, x i and x j where 

there are n features. X i and x j are two points there are n features and the distance 

between them is s equal too, I think I made a mistake so this not k this is sigma over s 

equal to 1 to n, where n is the number of features. 

So what we do is that we look at, this is the distance between two points each having n 

features and we take the distance from every dimension. So, x i s minus x j s is the 

difference in a particular dimension of these two objects. In Euclidean distance we take x 

i s minus x j s whole square summation and the whole thing root over. In Manhattan 



distance called city block distance we just take x i s minus x j s absolute value and we do 

the summation. 

There is another measure called the Cosine measure, which is a very popular measure 

when we are dealing with text documents. In text documents, we often represent a simple 

representation of a text document is as a bag of words. We look at the words in the 

document and the number of words. We look at the set of words and the frequency of 

each word. So, when we represent the documents as a vector the distance between two 

different documents can be used as a cosine of the two vectors representing the 

documents. The cosine measure is very popular when we work with text documents, 

Euclidean distance does not work well with text documents. 
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Then there are other types of distance measures. For example, the Mahalanobis distance 

between two x i and x j is given by x i minus x j sigma inverse x i minus x j. Then you 

have correlation coefficient, for example Pearson correlation which is given by 

covariance of x i, x j divided by the standard deviation of x i multiplied by standard 

deviation of x i. 
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So, different distance measures can be used depending on the dominium which applying 

this algorithm. Now as I mentioned the K-means algorithm is guaranteed to converge, 

because as you go to the iterations the within cluster sum of square distance will go on 

monotonically decreasing, and this is the proof.  

Suppose, you have k clusters m 1, m 2, m j are the means of the clusters, and suppose m j 

is the number of members in cluster j. Now sigma x i minus a whole square this quantity 

reaches minimum under such following conditions. These conditions are given as; if you 

take the differentiation of this you get sigma minus 2 of x i minus a equal to 0. From this 

we will find that sigma x i equal to sigma a, and because the cluster has m j members this 

is equal to m j a. Or, you take a equal to 1 by m j sigma x i. 

So, if you take a equal to 1 by m j sigma x i that you take as the center of the cluster. 

This is what you are doing in K-means; we are re-computing the cluster center as the 

centerior of the points which belongs to the cluster. And if we do that this will give you a 

reduction in the quantity of within cluster sum of squares. 
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Now, what is the time complexity of this algorithm? The time to compute the distance 

between two objects is O n, where n is the number of features. The reassignment of the 

cluster takes O km. So, you (Refer Time: 18:39) so many distance computations, why? 
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Every point there are m object there are n features, there are m objects there are k 

clusters. In the reassignment steps every object. You check its distance with each of the 

cluster centers and reassign it to the closest. So, the reassignment face will take O km 

computations of distance and each computation of distance is takes time n. So, each 



iteration takes O k m n time. If there is t iteration then the total time taken is O tkmn. For 

K-means algorithm usually they converge quite quickly and t is usually quite small. So, 

the time to run this algorithm is O tkmn. 

(Refer Slide Time: 19:46) 

 

So, what are the advantages of K-means algorithm? It is the fast algorithm, robust 

algorithm easy to understand, relatively efficient, and it gives good result when the data 

set adjusting or well separated from each other. 

(Refer Slide Time: 20:00) 

  

 



But there are certain disadvantages. It requires apriori specification of the number of 

cluster that is k has to be given. Also the K-means algorithm that we have described 

there is a hard assignment or partitioning of the objects. So, each object has to belong to 

exactly one cluster. There are situations where one object may have similarity to two 

different clusters, and there is soft clustering algorithm which assigns an object to 

multiple clusters. But in K-means there is a hard assignment to a single cluster. The 

distance measured, depending on the domain that the distance present has to be carefully 

chosen. 

If we would use Euclidean distance measured it leads to unequal weighting of the 

underlying factors, and it is not a very good distance function to be used for some types 

of data. Also K-means algorithm will only work when the means of the objects can be 

defined. So, if the features that we are using have lot of categories then you cannot find 

the means, so K-means is not very appropriate. And we have seen K-means only gives 

you a local optimal not the global optimal. 
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This picture taken from Bishop’s book on machine learning shows, K-means algorithm 

applied to an image. So, if you look at an image and image can be described in terms of 

the pixels. There are various of pixels in an image, and each pixel is described by the RG 

and B values. Now a typical image can have very many colors. Suppose you want to 

denote the image in terms of a few numbers of colors. 



So what you can in that, you can take every color that is there in the image and cluster 

the color. After that suppose you take k equal to 10 you can redraw the image using only 

10 colors. If you look at the slide we have x 1, x 2, x i as the different pixel colors, we 

use K-means algorithm which comes up with k clusters of colors. And this shows when k 

equal to 2, when we use 2 colors we get this image, 3 colors we get this image, 10 colors 

you get this image where as this is the original image. This is an example of application 

of K-means. 
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I will also quickly running to another example from the book, where these are the green 

points are the objects, the red and blue are the initial cluster centers. 
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This shows the reassignment of the point to the cluster centers, the new cluster centers, 

again the reassignments of the points, the new cluster centers, reassignments of the 

points, new cluster centers, reassignments of the points, and there is convergence. 
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I will very briefly talk about Model-based cluster. In K-means we have an iterative 

algorithm. Now I will very briefly describe a model-based clustering algorithm. In 

model-based clustering what we do is that we assume that there is a model from which 

the data is being generated. 
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So, we want to find k clusters, we assume that the model of the clusters is given by k 

probability distributions, and the model parameters are theta 1, theta 2, theta k. For 

example, we can assume that the model each cluster is modeled by a Gaussian 

distribution and we can think of theta one as the mean of the Gaussian distribution 

corresponding to cluster one. We can assume that all the Gaussians have a same 

variance. And suppose, we fix the variance of one, we could also say that the parameters 

are mu and variance, mean and variance of the Gaussian distribution. 

So, let us assume that theta 1, theta 2, theta k is parameters of the probability distribution 

corresponding to the k clusters. Now we are given data x, x is my set of objects. So, we 

have to find theta 1, theta 2, theta k. In model best clustering we assume that the data has 

been the data is being generated from a model, we have given the data; we have to find 

the parameters of the model. So, we have to find theta 1, theta 2, theta k.  

Let us call this big theta, so we have to find the parameters theta 1, theta 2, theta k such 

that the likelihood of the data is the maximum. For that we have to find that set of 

parameters for which the probability of generating x is highest. That is, we want to find 

theta 1, theta 2, theta k such that, probability x given theta 1, theta 2, theta k is the 

highest or equivalently such that the log of this probability is the highest. So, this is 

called the likelihood of the data this is called the long likelihood of the data and we want 

to maximize this long likelihood of the data 



Also in this model we have a slight deviation from the earlier model. We assume that a 

particular point x i has, x i need not belong only one cluster rather x i has a probability of 

belonging to different clusters. So, x i may have certain probability belonging to the 

cluster theta 1, another probability of belonging to the cluster theta 2, another probability 

of belonging to the cluster theta 2, theta k. So, that the sum of this probability is 1. So, 

every point can be generated by multiple distributions with some probability this is what 

we assume. 
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Now for this, there is a standard algorithm in order to do this and that algorithm is called 

the EM Algorithm. 
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The EM algorithm proceeds as follows. We initialize theta 1, theta 2, theta k randomly. 

So we initialize randomly, when we assume that theta 1, theta 2, theta k in a simplest 

way case we assume that they represent the cluster means. Now we iterate between two 

steps and these two steps are the E-step and the M-step. In the E-step, we assign the 

objects to clusters. And in the M-step, we estimate the model parameters based on this 

assignment so as to maximize the likelihood of the given assignments of points. So, we 

do a maximum likelihood estimate of the model parameters. So, this is the EM algorithm 

and these two steps are iterated. 

For example, in the E-step in order to assign objects to clusters as we said that we need 

not do a hard assignment rather we do a probabilistic assignment. We probabilistically 

assign points to clusters. So, we want to find probability of the cluster mean given the 

point or given the objects. For example, for this we can use base rule which tells us that 

this equal to probability of the mean times probability of point given mean times divided 

by probability of the point. And from the data we can find out probability of point given. 

In the M-step we find the weight. We find that each mean the maximum likelihood 

estimate of the mean is the weighted average of the points belonging to each cluster. And 

what is the weight? Weight is the probability of the point belonging to that cluster. 

Where, weight is equal to probability of mean given point. So, this is how the EM 

algorithm process. 
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For example, in this particular case if you look at the slide in this EM algorithm we 

initializing k cluster centers. In the E-step we assign points to clusters probability that the 

point x i belongs to the cluster C k is given by probability of x i given C k divided by 

summation over j probability x i given C j. And the weight can be computed as 

summation over i probability x i into let C k by n where n is the points belonging to the 

cluster. 

In the maximization step, we estimate the model parameters as r k, is r k is the 1 by n 

summation i equal to 1 to n probability x i included in C k divide by sigma j probability. 

So, this is one particular instance of the EM algorithm. As you can see that the K-means 

algorithm is also an example of the EM algorithm, but with certain restrictions so that we 

allow the point belonging to only 1 cluster. 
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So, in a K-means algorithm we represent a data set in terms of k clusters each of which is 

summarized by the cluster center mu k. We initialize the means iterate between two 

faces. In the K-means algorithm in the E-step we assign each data point to the nearest 

prototype, M-step we update prototypes to be the clusters. This is an example of the EM 

algorithm, but in general EM algorithm is more general and we can use model base 

Clustering. 

With this I stop today’s lecture. 

Thank you. 


