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Good morning. Today we will continue our lecture in Computational Learning Theory. 

And we will talk about situations where the hypothesis spaces infinite, what type of 

relations guaranties or theorems we have in such cases. 
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So, we will see that we want to find out, if the hypothesis spaces infinite how we can 

find out the required number of examples. In the last class, we looked at finite hypothesis 

space and we showed that the number of examples required to ensure pack learnability 

depends on the log of the size of the hypothesis space. 

But, if the hypothesis spaces infinite in size then this will not be finite value. In that case 

we will not be able to come up with the required hypothesis. When can hypothesis space 

is infinite? Suppose your hypothesis is and you have X 1 and X 2 are two attributes and 

your hypothesis in straight line, right. 
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If X 1 and X 2 are real valued attributes, then the number of linear functions can be 

infinite or your hypothesis can be a circle or it could be a triangle in this particular space. 

In all these cases the hypothesis space is infinite and the bounds that we looked at in the 

last class will not apply. So, we will have to look for other measures by which we can 

measure the complexity of the hypothesis space and in terms of which we can specify the 

sample complexity required for learning.  
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For this we will discuss a concept called the VC dimension which stands for Vapnik-

Chernvonenkis direction after the names of these two people. So, the VC dimension 

provides a measure of the complexity of the hypothesis space which is denoted by VC H. 

VC dimension can be defined for a finite hypothesis space also, but for infinite 

hypothesis space it is very useful because the size of the hypothesis space cannot be 

used. So, VC dimension, in terms of VC dimension we can find bounds for sample 

complexity as we will see. 
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So, let us consider a hypothesis. So, first let me introduce the concept of Shattering. 

Suppose we have a hypothesis space capital H and there is two class problem and we 

have a set of n points. Suppose we have two points. 
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We have two points P 1 and P 2. Now, if there are two classes plus and minus how many 

ways can we label these two points. They can be labeled in 2 to the power N ways for 

example, here we have two points we can label this as blue this as red, or red blue, red 

red, blue blue there are 4 ways in which we can label the set. If there are n points there 

will be 2 to the power N ways by which we can label the set.  

If for every such labeling, there is a function in the hypothesis space which is consistent 

with that labeling then we say this set of points is shattered by the hypothesis space. If 

your hypothesis space is a linear function, if both of them are plus you can have a 

function so that this side is positive, this side is negative, which will be consistent with 

this labeling. If you have P 1 as plus and P 2 as minus, you can have this as a decision 

surface where this side is positive, this side is negative. If P 1 is negative, P 2 is positive 

you can have a decision surface where this side is positive, this side is negative. Where 

both are minus you can have a decision surface where this side is negative, this side is 

positive.  

So, for all possible labeling of these two points you can find a hypothesis from the 

hypothesis space which is consistent with the labeling. Now, let us take 3 points P 1, P 2, 

P 3. How many possible ways can you partition this space? You can partition this space 

into two cube that is 8 ways, and we can show that for every possible such labeling we 

can find a line which separates those points.  
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But if we have these 3 points which happen to be in a straight line, there is a labeling 

plus minus plus for which we cannot separate the plus and the minus points using in a 

straight line. So, this particular set of 3 points cannot be shattered by the hypothesis 

space which comprises of straight lines.  

So, the definition of shattering says that given a set of n points, if for every labeling of 

those points there is a function in the hypothesis space which is consistent with the 

labeling then we say that set of those points is shattered by the hypothesis space. 
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And this example shows 3 point in the real space, in the two-dimensional space and we 

can show that for these 3 points for all 8 possible labeling we can find a separator. But 

for these 3 points, there is a labeling for which there is no separator. So, it may be that 

there are some sets of points for which we cannot find a labeling, but what we really 

want is that does there exist at least one set of three points which can be shattered.  

So, it is enough to find any one set of three points that can be shattered by the hypothesis 

space then, we say that this hypothesis space shatters 3 points in two-dimensions. 

(Refer Slide Time: 07:26) 

 

So, for this 3 points you know these blocks show the different hypothesis which are ovals 

corresponding to all possible labeling of these 3 points. 
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This is another example, suppose we have two points X and Y, and our hypothesis space 

comprises single real valued, single intervals on the line and we can see that, if there X 

and Y are 2 points, X and Y can be both positive; if they are both positive we can use, let 

us just if both are positive we can use these interval. If both are negative we can use this 

interval. If this is positive, this is negative we can use this interval. If his is positive, this 

is negative we can use this interval. So, there are 4 possible labeling and corresponding 

to this we can find the interval, so these two points can be shattered.  

If you have 3 points on the real line, on the other hand you cannot shatter them. For 

example, let us look at this example here we have 3 points and corresponding to these 3 

points we have 8 possible labeling. First case, all of them are negative xyz is negative, 

none is positive, X is positive, Y Z is negative, like this we have 8 possible situation. And 

for some of this situations we can find an interval which is consistent with this labeling, 

but we cannot find a consistent function in the case where X and Z are positive Y is 

negative in that case we cannot find any consistent function. So, these 3 instances on the 

real line cannot be shattered by a single interval. So, in this case we say it is not 

shattered. 
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So, based on this discussion, we now come up with the definition of the VC dimension. 

The VC dimension of a hypothesis space H is defined over instance space X, it is the size 

of the largest finite subset of X which can shattered by H. So, for example, we saw that 

when we have points on the real line there is a set of 2 points which can be shattered by a 

hypothesis space which consists of single interval on the real line. But, if you take any 3 

points, any 3 points which lie on the line there is a labeling for those points for which 

you cannot find an interval consistent with that labeling.  

So, for the hypothesis space which comprises of a single interval on the real line and 

instance space which consists of points on the real line, the VC dimension is 2, because 

there is a set of 2 points that can be shattered and no set of 3 points can be shattered. So, 

in general if there exists at least one subset of instance space X of size d that can 

shattered then the VC dimension is greater than equal to d. If no subset of d can be 

shattered then VC dimension is less than d and as I have said for single interval on the 

real line all set of two instances can be shattered, but no set of three instances can, so VC 

dimension is 2.  

Now, if the hypothesis space is unbiased for example, if we have the set of Boolean 

variables, n Boolean variables and we can look at any Boolean formula then that 

hypothesis space shatters the entire instance space. So, there are 2 to the power N 

possible instances; for any partition of those instances we can come up with the Boolean 



formula. So, the Boolean formula, unrestricted Boolean formula hypothesis space 

shatters the entire instances space and it is unbiased. But when we go for some 

restrictions that is when we go for only conjunctive formulas then, the hypothesis space 

becomes constraint and for all possible values of that attributes of instances we will not 

be able to find the conjunctive Boolean formula that is consistent with the labeling.  

So, the larger is the (Refer Time: 13:11) subset that can be shattered, the more expressive 

the hypothesis space is. So, the Unrestricted Boolean formula is very expressive, 

Conjunctive Boolean formula is much less expressive. The VC dimension of the set of 

lines in two-dimension is 3, let us see how.  
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We have already told that if I have these 3 points there are 8 ways of labeling these 

points, and for each such labeling for example, this is plus, these two are minus we can 

find a separator or these two are plus this is minus we can find a separator, all three are 

positive we can find a separator and so on, for all 8 possibilities we can find a separator. 

But, we can show that if we take any 4 points then in all such cases there will exists 

labeling for which we cannot shatter them. For example, these two are plus, these two 

are negative there will be no linear function existing, but then you can say maybe we can 

have a different arrangement, but whatever arrangement you do it can shown that there 

will be a labeling for those 4 points cannot be shattered. No 4 points can be shattered by 



a hypothesis space as a straight line. So, the VC dimension of the set of oriented lines in 

two d is 3.  

And also we can look at the general relation, if there are m instances there are 2 to the 

power m labeling and if hypothesis space can shatter this instance space, if H shatters S 

comprises m instances, if H shatters S - for each of these labeling there will be one 

element hypothesis space, so the size of the hypothesis space will be greater than equal 

to 2 to the power m; which means that, the VC dimension of H will always be less than 

log of the size of the hypothesis space. 

Earlier we found a bound on sample complexity based on the log of the log or natural 

logarithm of the hypothesis space, we shown now that the VC dimension of the 

hypothesis space is less than equal to log H. This is one more example of VC dimension 

on the slide. 
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Suppose our hypothesis space consists of rectangles, which enclose the positive points 

and these rectangles are axis parallel rectangles that is the two sides are parallel to the X 

1 and X 2 axis, respectively. If we take a set of 4 points, there are 16 possible labeling 

possible and we show that for each of these 16 possible labeling or 16 possible partitions 

there is a rectangle which encloses the positive points. So, this set of 4 points can be 

shattered by the hypothesis space which comprises of axis parallel rectangles.  



But there is another set of 4 instances that cannot be shattered; that does not matter. 

These set of 4 instances, this can be shattered. So, VC dimension of this hypothesis space 

is greater than equal to 4. It can be shown that there is no set of 5 points which can be 

shattered by this hypothesis space and therefore, we can say VC dimension of this 

hypothesis space is equal to 4.  
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So VC dimension is equal to 4.  
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Now, why we are looking at VC dimension, it has been shown by Blumer in 1989 that 

using VC dimension it has been found that we can find a bound of the sample 

complexity. That is, if we look at m greater than equal to this many examples that is, 1 by 

epsilon times 4 log 2 by delta plus 8 times VC dimension H times log of 13 by epsilon. If 

we look at these many examples and we output a consistent hypothesis that consistent, 

that hypothesis will be probably approximately correct.  

Earlier we had shown a result which involved log of H, this bound includes VC of H and 

we already saw that VC of H is less than equal to log of H. Of course, there is some other 

factors higher constant etcetera, but we know also have a log of 1 by epsilon into 1 by 

epsilon but this provides tighter upper bound on the number of examples needed for PAC 

learning. And especially for infinite hypothesis space, the earlier formula does not apply 

here we can apply this type formula. 
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We will also state another result which gives a general lower bound on the minimum 

number of examples necessary for PAC learning this was given by Ehrenfeucht in 1989. 

And according to that equation that theorem that proof in that paper, if you consider any 

concept class C whose VC dimension is greater than 2 and you have a learner L and 

epsilon is between 0 and one-eighth, delta is between 0 and 1 by 100 then there is a 

distribution d and the target concept C for which, if you observe few more these of 

examples then you do not get an approximate hypothesis.  



This shows that the type of bound that we bought by Blumer for saying the number of 

examples needed for PAC learning is very tight, because the lower bound shows that less 

than this number of examples will not give you approximately correct hypothesis and 

these two expressions are almost close according to certain factors.  

With this brief introduction to Computational Learning Theory, we will end this topic 

and in the next class we will study a little bit about Ensemble Learning. 

Thank you very much. 


