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Good morning, in the last class we looked at computational learning theory and we 

looked at situations where a learner sees a certain number of examples, outputs the 

consist hypothesis and we derived bounds on how many examples the learner has to see, 

so that a consistent hypothesis is a PAC hypothesis.  

So, today we will continue our discussion and look at the situation where the hypothesis 

output by the learner has non-zero error on the training set and then we will look at a few 

worked out examples. 
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So, in the last class we have seen that in the finite hypothesis case where the learner 

outputs a consistent hypothesis what value of m is required. 
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Now, today we will look at how many samples will be required to guarantee a PAC 

hypothesis and we will explain, what we mean by this? Where the learner outputs a 

hypothesis which has some error, there is a sample error which is output by of the output 

hypothesis. Now, what we want to do is that we want to find the guarantee that the actual 

error, the true error of the hypothesis f over the distribution D (f) is a hypothesis which is 

output by the learner, which may have an error given by error D (f), where D is the 

sample, this is the sample error and this is the true error. So, we want the probability that 

the true error is less than equal to the sample error plus epsilon. 

We have earlier seen that normally the true error will be greater than equal to the sample 

error, and we want that the true error is not so much different from the sample error, that 

is true error is less than equal to epsilon plus sample error for a given epsilon and we will 

find out that. If m is the number of training examples with respect to which you have 

tested, you have come up with the hypothesis then this probability is less than equal to e 

to the power minus 2 m epsilon square, and we want to ensure that the best hypothesis 

that our algorithm outputs has error bounded in this way. So, we consider that any one, 

suppose the hypothesis that the learner comes up with has an error, error D (f), this is the 

sample error 

And we want to find out the probability that there exists any hypothesis whose true error 

is less than equal to this is less than equal to h times e to the power minus 2 m epsilon 

square. This is for a single hypothesis, this is where they exists any hypothesis at all and 

from this we can derive the bound by algebraic manipulation that in order to ensure that 



the number of examples required must be greater than equal to 1 by 2 epsilon square 

times logarithm h plus logarithm 1 by delta. So, if you have this many numbers of 

examples, then the hypothesis which comes up with the training error of x will 

correspond to a hypothesis whose true error is less than equal to epsilon plus x. 
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So, just to summarize, in consistent case we found this bound on m, this value of m in 

the inconsistent case we find this value of m and we can compare these two equations. 

So, here in the consistent case we came up with m greater than 1 by epsilon log h plus 

log 1 by delta, here we come up with this value of m. So, we see that there is a lot of 

similarity between these relations, but in this case, in the inconsistent case you require 

larger number of examples, larger by a factor of 2 by epsilon in order to give this 

guarantee, what is the guarantee? The guarantee is that the true error is no more than 

epsilon error epsilon plus sample error. 
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Now, let us look at an example of the first case. So, suppose we look at a particular 

hypothesis class. So, our hypothesis class is conjunction of Boolean literals, these are 

also called monomials. Suppose, x 1, small x 1, small x 2, small x n are your features 

these are your features. So, examples of Boolean literals are x 1 and x 2bar and x 4 x 2 

and x 3 bar and x 4 bar x 2 bar and x 7, these are examples of conjunction of literals.  

Now, this is our hypothesis space, what is the size of this hypothesis space? There are n 

literals in a particular hypothesis that literal may occur in the positive form, may occur in 

the negative from or may not occur at all. So, each for each literal there are three ways of 

it appearing in this formula and there are n literals. So, the size of the hypothesis space is 

3 to the power n. 

If we take this particular hypothesis space, the size of the hypothesis space is 3 to the 

power n and if we plug it in here in the equation that we have then what we get is m 

greater than equal to 1 by epsilon log of 3 to the power n plus log of 1 by delta and log of 

3 to the power n is just n log 3. Now, we can put values for epsilon and delta and given 

the number of features, we can find out the value of m and these are some of the values 

that I have worked out. If epsilon and delta are both 0.05 then if you have 10 features 

then you require 280 examples. If n is 10 epsilon is 0.05 delta is 0.01 then you require 

312 examples. If epsilon and delta are both 0.01 then you require 1560 examples. If 

epsilon and delta are 0.01, n is 50, it requires 5954 examples. 



And these values are coming from this formula and this result holds for any algorithm 

which given a training set can find a consistent hypothesis, and it is up to you to design 

an algorithm which processes a training set and find out if there is any consistent 

hypothesis. If there are many consistent hypotheses, your algorithm will come up with 

one of them. One such algorithm we will just discuses very quickly that can come up 

with the conjunction of Boolean literals given a training example is called finders and I 

will quickly go through the algorithm. 
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So, here we have a concept learning task and we have 6 or 7, we have 6 different 

attributes sky, air, temperature, humidity, wind velocity water temperature forecast 

enjoys sport. So, enjoys sport is our target variant and these are our input attributes. 

Now, a conjunction of constrains conjunction of literals is our hypothesis space and a 

conjunction can be represented by, you see for every attribute in a particular hypothesis 

that attribute may occur in the positive form, may occur in the negative form or may not 

occur. If it does not occur any value of that attribute is acceptable. So, I put question 

mark when any value is acceptable and otherwise I specify whether it is there in the 

positive from or negative form, 5 means no value is acceptable.. 
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So, this is a representation of one such hypothesis, which says the x 1 can be anything, x 

2 must be cold, x 3 must be high, x 4, x 5, x 6 can be anything right. So, this is one 

particular hypothesis. The most general hypothesis is one where any attribute can take 

any value and the most specific hypothesis is one where no value is possible 
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Now, what the find s algorithm does is that it initializes small h, small h is our current 

hypothesis. It initializes small h to the most specific hypothesis in the hypothesis space in 

this case 5, 5, 5, 5, 5, 5 then it takes a positive training instance and for each attribute a i 



in the hypothesis, if the constraint a i in h is satisfied by h will do nothing, otherwise if it 

is not satisfied we will replace a i by the more general constrain satisfied by x, for 

example, if a i was given as true and it is not satisfied then. 
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Finally, after processing all the positive examples, we will output the hypothesis h that 

we get. So, suppose you are given this training set and you run the algorithm then 

initially h 1 is the most specific algorithm, most specific hypothesis where all attributes 

where none of the attributes are permissible. 

Then after you see the first example 1, where sky is sunny temperature, warm humidity 

normal etcetera then h 2 becomes sunny, warm, normal, strong, warm same which agrees 

with the first training exam, it is the most specific hypothesis that agrees with the first 

training example, then you bring in second training example and the second training 

example as humidity is high which is not agreeing with the current hypothesis. So, 

humidity you set as question mark which is the more general form. Then we look at the 

next training examples and you find out that water is not agreeing, water and forecast are 

not agreeing. So, you put these things. So, this is the final hypothesis that you have h 4 is 

sunny, warm, question mark strong question mark question mark. 

Now, this is the find s algorithm which given a set of training examples finds a consistent 

hypothesis, and if more than one consistent hypothesis exists it will come up with the 

one which is more specific and according to our theory for this particular hypothesis we 



can have this relation. The relation states that, if we look at these many numbers of 

examples then we can produce these guarantees. 
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If your hypothesis space is all possible Boolean function, the size of the hypothesis space 

if you have n attributes is 2 to the power 2 to the power n which we have already seen in 

this case, m will be given by this relation, m greater than equal to log of 2 to the power 2 

to the power n plus log of 1 by delta into 1 by epsilon and if you put some values of 

epsilon and delta, for example, epsilon and delta are 0.05, n is 10, you require 14,256 

examples, but if n equal to 20 you require 14.5 million examples and n is 50, you require 

1.561 into 10 to the power 16 examples. So, if the number of attribute is large, the 

numbers of examples required is exponentially which makes this problem infeasible. 

With this we stop today. 

Thank you. 


