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 Good morning. Today, we start with module 7. In this module, we will talk about 

computational learning theory, and also Ensembles learning.  

The first, we will start with computational learning theory. In the first part of the lecture, 

we will talk about the learning model that we will use, which is PAC model, and we will 

look at situations where we have a finite hypothesis space.  
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So, the goal of learning theory, so far in this course, we have looked at several learning 

algorithms. Today, we will try to look at in brief, in the basic underlying theory of 

computational machine learning. The goal of learning theory is to understand what is 

learnable. 
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So, we have looked at different tasks, different learning tasks. We want to understand 

what type of tasks can be learned; and so, which tasks; and in order to learn those tasks, 

what type of data is required. For example, we will talk about, how much data is required 

for a particular learning task; or what is the number of samples, size of the training set, 

which we call sample complexity.  

So, there is a task, and there is a data; we want to understand which tasks are learnable, 

and in order to learn them, what size of data is required. We will also look at the resource 

requirement for an algorithm, if the task is learnable using some data, and that data is 

available to you. The algorithm has some resource requirement, that is, the space and 

time complexity of the algorithm that is required to solve the learning task, given the 

data.  

So, this is our goal of learning theory. Also, we want to develop an analysis model. So, 

we want to develop these algorithms, and these algorithms must meet our desired 

criteria. So, we will define criteria, under which, we will say an algorithm is successful, 

and we will have to develop algorithms that meet those criteria. And we have to provide. 

So, algorithms that is provable. So, we have to provide, or prove guarantees. So, what 

sort of guarantees, or confidence, we have on that algorithm.  



So, these are the things which we need to study, when we talk about machine learning 

theory. Now, we have seen earlier that there are 2 core aspects of machine learning. So, 

one aspect is designing algorithm, right. So, in machine learning, we design algorithms. 
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And we usually design algorithms that optimize certain criteria. So, we are given some 

data; we assume a hypothesis space; and that algorithm finds a hypothesis, from the 

hypothesis space that is optimizing certain criteria. So, this is the most machine learning 

algorithms are of this type. So, one is to design algorithms; second is, we have to find out 

what is the confidence on this algorithm. So, in the sense that we want to know how well 

this algorithm will work on future data instances; that is what the generalization ability 

of the algorithm? So, given that we train the algorithm on the training data, how well it 

will generalize and perform on future data?  

 Now, in order to formally talk about this task, we will require some setting, or learning 

model. So, the second that we will talk about this, in this class, is the PAC setting. P A C 

stands for PAC. P stands for probably; A stands for approximately; and C stands for 

correct. So, and we will study PAC models. So, scenarios where we get an, get a model, 

that is probably approximately correct; and we will explain what we mean by that. So, 

very simply, let us denote that this is our universe, or hypothesis.  
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This is our universe, which contains the different instances.  

Suppose, c is the target function which we wish to learn, so this is the instance space, and 

the instances which are within c are members of the class. And we want to learn c; c is 

the ideal class that we wish to learn. And in order to learn c, we have got some training 

examples, which are labeled as positive, or negative. So, we have given this label. We 

have got positive and negative examples. So, we want to come up with the hypothesis h. 

So, c is the original, actual hypothesis, which comprises, the positive examples are 

within c; the negative examples are outside c. We have a sample from the instance space, 

as part of our training data and we want to come up with the hypothesis h.  

Now, h may not be exactly equal to c. So, what is the error region? The error region is 

given by c XOR h; this is an error region. c says that these instances are within the 

concept; but h does not include them. This region is also error, c says, outside the 

concept, but h says, it is inside the concept. So, this region and this region are the error 

regions. This region and the outer region, they are the correct region. So, this c XOR h is 

the error region, and we want the probability of this error region to be small. So, we 

want, we want probability of c XOR h to be less than equal to epsilon.  

Ideally, we want c to be, h to be equal to c, but sometimes; it will not be possible to get c 

equal to h. So, we want to bound the probability that an instance will occur in this region. 

So, a hypothesis is said to be approximately correct, if the error is less than equal to 



epsilon, where epsilon is a parameter; epsilon is between 0 and 1. Or, we can say, epsilon 

is between zero and half. So, epsilon is the error parameter, and if for a given epsilon, the 

probability of this error region is less than equal to epsilon then we say, the hypothesis is 

approximately correct.  

Now, there would be certain cases where we may not be, you know, some situations, a 

learning algorithm will mostly expected to give us approximately correct hypothesis, but 

there may be certain situations where the learning algorithm may not give us the correct 

hypothesis, which is epsilon approximate. So, the probability, we want to bound the 

probability that the learning algorithm gives us an approximately correct, correct 

hypothesis. This probability must be greater than 1 minus delta, right.  

So, probability that we get an approximately correct hypothesis is greater than 1 minus 

delta. So, delta is called the confidence parameter. Again, delta can be between zero and 

half. So, this, the probability with which we get an approximately correct hypothesis, this 

is called the confidence. This is controlled by the delta parameter, right. We can set delta 

small, let us say, 0.01, then, we can say with 99 percent, wait, for 0.99 probabilities we 

get an approximately correct hypothesis. And what is approximately correct will be, will 

depend on epsilon. 
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Now, in a prototypical concept learning task, we have talked about concept learning, in 

all the earlier classes. In a concept learning task, we have instances x, and x for example, 



can come from, if your features are real numbers, x can come from R to the power d, or 

if the features are Boolean, x can come from zero 1 to the power d, where d is the 

number of features, or the dimensions of the instance space. So, X is our instance space, 

and we have a distribution d over the instance space. So, X is our instance space, and 

there is a distribution d over the instance space; and let us see with the target function, 

and capital H is the hypothesis space.  

And we have training examples x i, y i, and because c is the actual concept, the y i is 

equal to c x i. So, the training example, S is the set of training examples, which 

comprises tuples x i c x i; and these training examples are drawn from the distribution d, 

and they are identically, independently drawn. So, they are i i d from distribution d. So, 

we have a instance space, which consists of all the instances. This is the instance space, 

and we have a target concept c, which we want to learn, and we have a hypothesis space 

capital H. We want to find a hypothesis small h which belongs to capital H, given the 

training examples S. The training examples are given by plus and minus. They are 

labeled as either plus or minus.  

The learning task is to determine a hypothesis small h belonging to the space, such that 

you know, we will first look at the scenario, where given the training examples, you find 

a hypothesis, which agrees with the training example. That is, for the training examples, 

it produces the correct labeling. Such hypothesis are called consistent hypothesis. 
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We will also see that in certain cases, we cannot look for consistent hypothesis, and we 

will allow inconsistent hypothesis. So, we can try to find out a hypothesis which agrees 

with the labeling; the labeling that the hypothesis produces, agrees with the labeling in 

the training set.  

Ideally, we really want a hypothesis which produces the correct output for all instances. 

But, if we do not have the labeling of all instances, we can never be sure that the 

hypothesis that we come up with will actually label all instance correctly. But, we can 

definitely try to find a hypothesis, if one hypothesis exists, which labels the training 

samples correctly. So, we are given the training sample S, and the algorithm that we will 

design will optimize over S, and come up with the hypothesis small h.  

Our real goal is to find a hypothesis which is highly accurate with respect to the 

distribution d over the instance space. So, we ideally want a hypothesis which has small 

error over the distribution, over the instances, but in reality we do not have all the 

instances; we have a sample; and based on that we have to come up with the hypothesis.  

So, we do not know whether the hypothesis will actually label the, all the instances 

correctly. But, we have to have some idea about how well the hypothesis will generalize. 

If we really have to absolutely guarantee that the hypothesis is the correct hypothesis, it 

must label all instances correctly, and for that you have to see all the examples. There is 

no shortcut to this. This is often called no free lunch, but we have seen that when we are 

doing inductive inference, we often use some types of bias, so that we can come up with 

a hypothesis. For example, we can put a bias on the form of the hypothesis class, so that 

we only allow hypothesis of certain restricted type. This is called restriction bias, which 

we have discussed earlier.  

So, in inductive inference, where we have to generalize beyond the training data, we will 

need a bias to decide which hypothesis to come up with. That bias can be a restriction 

bias, which restricts the hypothesis space to simple hypothesis, or it could be a 

preference bias, which says, within a hypothesis space, certain hypothesis are preferable 

over other hypothesis. For example, when we say, we prefer small decision trees over 

large decision a tree that is a preference bias. 
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Now, so, basically, the problem in learning theory is about function approximation. 

Suppose, we have N features, N Boolean features and we have a hypothesis. So, we have 

N Boolean features. If you have N Boolean features, how many possible instances are 

there? So, each of these features can be marked as true or false. So, that is 2 to the power 

N possible instances. A particular, take any hypothesis h i. So, what h i will do is that it 

will say, a subset of these instances are positive, the rest are negative. So, a hypothesis 

corresponds to a partition of the instance space into positive and negative.  

How many ways can we find subsets of the instance space, of the size 2 to the power N? 

There are 2 to the power 2 to the power N possible subsets of 2 to the power instances. 

That is, there are 2 to the power 2 to the power N possible partitions of the instance 

space. And we have to choose among them. Now, if we really want to make sure that 

given the training set, only one of these is correct, we have to see all the 2 to the power N 

instances. Without seeing all the instances and their labels, we will not be accurately able 

to pin point exactly one hypothesis from here. So, the set of the hypothesis space is 2 to 

the power 2 to the power N, and ideally, in order to fix one hypothesis, exactly one 

hypothesis, which matches our c, we have to look at all the instances.  
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But, which it is not always possible to do that because; this requires exponential number 

of examples. We cannot do it in polynomial time. So, it is not practical to do it. So, we 

will come up with the hypothesis by looking at fewer instances. So, we will only see the 

labeling of a sample of the instance, and based on that labeling, we will come up with the 

hypothesis. 
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So, we come up with the hypothesis h, and we can measure the error of h on S. S is our 

training data. On S, we can measure error on h. But, we really want to know, what is the 



true error of the h, and we want to really, the learning problem is to minimize the true 

error of the h. But, we can only find out the sample error of h. So, the true error of the h 

is denoted by error of h, according to the distribution D. And this we can define as the 

probability that c x and h x do not agree, where x is drawn according to the distribution 

D, right. So, this is the true error of h.  

And we cannot really find the true error; we can find the sample error, for the training 

examples, or for another sample, for which we have the labeled values. So, in fact, if h is 

the hypothesis space, we are trying to find small h belonging to capital h. But, it is 

possible that c possible, that c may not be in h; c may not be in h is possible. But, what 

we really want is that we want at least h to be close to c. So, h must be close to c, this is 

what we want; and this is what we depicted by that diagram, saying that if this is c, this is 

h, we look at the error region of c and h, and we want this to be small.  

And so, c has zero error, zero true error; what we want is an h, so that that error of h, 

with respect to the distribution, is less than equal to epsilon. So, we want error D h less 

than equal to epsilon, and as we have said, we call a hypothesis, if under this condition; 

this hypothesis is called approximately correct.  

 Now, the goal is that h has small error over the distribution.  
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Now, we want to know, how often h x and c x differ over future instances. The sample 

error, this is the true error, the sample error is defined over the training set. Let us say, 

training set has size m, and over all the training set, we can find out how many of them 

do not, the label of h and c do not match; and 1 by m is the average error. So, this is the 

training error. And we want to; we can find the training error. So, what we now will look 

at, how to bound the true error in terms of the training error. So, if I get a particular 

training error, how can we estimate how much the true error can be, or what is the bound 

of the true error; that is what we will like to look at.  
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Now, PAC learning, as I said, Probably Approximately Correct learning, that concerns 

efficient learning. We will like to prove that with high probability, that is, with 

probability greater than equal to 1 minus delta, an efficient learning algorithm, we will 

tell what does efficient mean, an efficient learning algorithm will find a hypothesis that is 

approximately identical to the target concept. Approximately identical means, the error is 

less than equal to epsilon. And we want an efficient algorithm, that is, an algorithm 

whose running time and space requirement is polynomial in certain things; polynomial in 

certain parameters. What those parameters are, we will look at.  

So, for this Probably Approximately Correct learning, we require 2 parameters epsilon 

and delta. And as we said, we require that with probability at least 1 minus delta, a 

system learns a concept with error at most epsilon.  
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So, this is the theorem which says that if the size of the training sample m is greater than 

equal to 1 by epsilon log natural logarithm of the size of the hypothesis space, plus 

logarithm 1 by delta, then, if we have that many number of training examples, it is 

sufficient to be able to PAC learn a hypothesis. We can PAC learn a hypothesis, if we are 

given so many examples. If you are given examples larger than this, and we come up 

with the hypothesis that is consistent with the training examples, that hypothesis will be 

probably approximately correct with the parameters delta and epsilon.  

So, m, as we see is, inverse linear in epsilon, logarithmic in the size of the hypothesis 

space, inverse, linear in logarithm of 1 by delta. So, this is the sample complexity for 

learning. You require this number of exam; any algorithm will require at least these 

numbers of examples, to guarantee that the task can be learned. Now, we will look at the 

proof of this theorem. So, suppose, we have a target concept, and this hypothesis space, 

the hypothesis space is the set of hypotheses; and this hypothesis space consists of a 

number of hypotheses.  
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And suppose, k of those hypothesis have error greater than epsilon, so this hypothesis 

contains many hypotheses, some of which may have error less than epsilon; those are 

acceptable to us. And it can contain k bad hypothesis, whose error are greater than 

epsilon. Now, we want that after we have seen m samples, any hypotheses which are 

consistent with those m samples must have error less than epsilon. That is, none of these 

bad hypotheses should become consistent.  

So, if I take a fixed hypothesis from the hypothesis space, the probability that that 

hypothesis h i is consistent with one training example, is less than 1 minus epsilon. Why 

is it so? h i belong to H bad. So, the error of h i is greater than epsilon. So, probability 

that h i is consistent with one training example is less than equal to 1 minus epsilon. 

Now, we look at m, all the m training examples. The probability that a bad hypothesis h i 

is consistent with all the m training examples is given by 1 minus epsilon to the power 

m. The probability that h i is consistent with the entire training set is less than equal to 1 

minus epsilon to the power m.  

Now, we have k such bad hypothesis. Probability that any one of them is consistent with 

the training examples is less than equal to k into 1 minus epsilon (Refer Time: 29:23). 

Now, k, you know, there are some bad hypothesis. How many bad hypotheses are there? 

It could be any number. It could be 0 or 1, or 2; maximum value of k is the size of the 

hypothesis space, where all the hypotheses are bad. So, k into 1 minus epsilon to the 



power m is less than equal to size of the hypothesis space into 1 minus epsilon to the 

power m.  

So, this is the probability with which a consistent hypothesis has error greater than 

epsilon. So, our algorithm is trying to find a consistent hypothesis. The probability that a 

consistent hypothesis has error greater than epsilon is given by this. And we want this 

probability to be less than equal to delta. Now, if we use the fact that 1 minus x is less 

than equal to e to the power minus x, we will see that if we can set H into e to the power 

minus epsilon m less than equal to delta, then, this condition will be satisfied. And we 

have this worked out, but let me just state it, and we will also look at this proof.  

And from this, from this, by manipulation, we get this; that m is greater than, if m is 

greater than 1 by epsilon log H plus log 1 by delta, then, so many labeled examples are 

sufficient, in the sense that if a learner finds a hypothesis which is consistent with m 

training examples, then, that hypothesis is a PAC hypothesis.  
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The other way of looking at this is that if you are using m examples, then, and outputting 

a consistent hypothesis, then, with probability at least 1 minus delta, that hypothesis will 

have, the error of that hypothesis will be less than equal to this. So, with probability at 

least 1 minus delta, a hypothesis which looks at m examples, its true error will be less 

than equal to this; you, can bound the true error of the hypothesis.  
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So, this is, you know, just working out of the particular thing, that if H e to the power 

minus m less than equal to delta, how we get the value of m. This is what we worked out 

and put in the previous slide.  

 Now, we have looked at the case where the learner looks at m training examples, 

outputs are consistent hypothesis; and we have looked at how many examples will be 

needed to be seen, in order to guarantee that that consistent hypothesis has error less than 

epsilon. And we want to do this with confidence greater than 1 minus delta, for this we 

have seen. But, there are scenarios where we cannot get consistent hypothesis, but, the 

hypothesis that the learner outputs is inconsistent; that it, it has error on the training set.  

In the next class, we will look at how to handle inconsistent hypothesis, and what is the, 

what are the relation in that case.  

Thank you.  


